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Abstract

Cloud computing has gained remarkable popularity in the recent years by a
wide spectrum of consumers, ranging from small start-ups to governments.
However, its benefits in terms of flexibility, scalability, and low upfront
investments, are shadowed by security challenges which inhibit its adoption.
In particular, these highly flexible but complex cloud computing environments
are prone to misconfigurations leading to security incidents, e.g., erroneous
exposure of services due to faulty network security configurations. In this
thesis we present a novel approach in the security assessment of multi-tier
architectures deployed on infrastructure clouds such as Amazon EC2. In
order to perform this assessment for the currently deployed configuration,
we automated the process of extracting the configuration using the Amazon
API and translating it into a generic data model for later analysis. In the
assessment we focused on the reachability and vulnerability of services in
the virtual infrastructure, and presented a way for the visualization and
automated analysis based on reachability and attack graphs. We proposed a
query and policy language for the analysis which can be used to obtain insights
into the configuration and to specify desired and undesired configurations.
We have implemented the security assessment in a prototype and evaluated it
for practical and theoretical scenarios. Furthermore, a framework is presented
which allows the evaluation of configuration changes in the agile and dynamic
cloud environments with regard to properties like vulnerabilities or expected
availability. In case of a vulnerability perspective, this evaluation can be used
to monitor the security levels of the configuration over its lifetime and to
indicate degradations.
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Chapter 1

Introduction

“Cloud computing is a model for enabling convenient, on-
demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and ser-
vices) that can be rapidly provisioned and released with minimal
management effort or service provider interaction.” [MG09b]

In recent years, Cloud Computing has gained remarkable popularity due to
the economical and technical benefits provided by this new way of delivering
computing resources, and the pervasive availability of high-speed networks.
Businesses can offload their IT infrastructure into the cloud and benefit from
the rapid provisioning and scalability. This allows an on-demand growth of
IT resources in addition to a pay-as-you-go pricing scheme, which does not
require a high up-front capital investment. These benefits are in particular
attractive to small businesses, like start-ups, who often have traffic spikes
or a steep growth rate, and who prefer to avoid intensive up-front capital
investment in their IT infrastructure. However, cloud computing is not limited
to such small business. The US government, one of the largest consumer of
information technology, is initiating a move of parts of its IT infrastructure
into the cloud, in order to reduce costs and gain productivity [Kun10].

These general principles of cloud computing can be implemented on
different abstraction levels. While Infrastructure as a Service, such as Amazon
EC2 [Ama10a], provides virtual machines, storage, and networks, higher
abstractions include Platform as a Service as well as Software as a Service
that provide the actual web-based applications to end-users.
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1.1. MOTIVATION & PROBLEM STATEMENT

1.1 Motivation & Problem Statement
Despite its benefits, Cloud Computing also induces unique challenges in terms
of security [MG09a]. Multi-tenancy requires proper isolation of users, the
abstraction of the cloud hinders compliance verification of the underlying
architecture, and the sheer complexity of such a system implies a high
probability of misconfigurations endangering the overall security.

While the benefits of cloud computing are clear and end-users demand such
services, security is a major inhibitor of cloud computing adoption on all levels
of abstraction [MG09a]. In numerous studies the security related problems
have been pointed out, and in particular noteworthy are [ENI09, Clo09]. One
of the top risks exposed in the study is the failure of isolation in the cloud
computing environment.

Cloud computing environments are becoming increasingly complex, more
tenants are sharing the same physical resources, and the flexibility and possi-
bility of programmatic configurations can lead to unforeseen misconfigurations.
For example, network-based storage volumes can be flexibly attached to vir-
tual machines, and potentially a volume will be attached to a wrong virtual
machine risking the exposure of sensitive data on that volume. Network secu-
rity is also flexibly managed through a programmatic interface, which could
lead to problems resulting in network services exposed wrongly to the public
and opening not properly secured services to other peers. Administrators of
such virtual infrastructures must be able to easily understand the complex
deployments and ensure that proper security is given. The dynamic and
agility of such environments also provides a challenge in ensuring the security
over its entire lifetime due to their constant changes.

1.2 Scope
Although cloud computing in general faces security challenges inhibiting the
adoption by consumers, in this thesis we will focus on infrastructure clouds.
In particular, we chose Amazon has an example for an infrastructure cloud
provider, because they are among the widest adopted providers and provide
a flexible but also complex architecture, which has a higher potential of
misconfigurations leading to security problems. Within the infrastructure
cloud, we are in particular interested in the security audit of multi-tier
architectures deployed in the cloud with a focus on network security regarding
reachability and vulnerability.
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1.3. METHODOLOGY

1.3 Methodology
In order to successfully address the problem of configuration complexity and
potential misconfigurations in cloud computing environments, we narrowed
down the problem domain to a specific case of multi-tier applications deployed
in infrastructure clouds using a specific cloud provider as an example case. We
will study existing literature in the broad domain of virtual machine security,
which plays a fundamental part in the security of infrastructure clouds, and
network security analysis with a focus on vulnerability assessment and reach-
ability. Based on the insights and inspirations obtained by performing the
literature review, we will propose a novel approach in assessing the security
of a multi-tier application deployed on the Amazon infrastructure cloud. By
implementing our approach and then evaluating it regarding practicality and
scalability, we will determine the practical usefulness for detecting miscon-
figurations even in large-scale deployments. The evaluation is performed
both theoretical and practical. The theoretical evaluation is conducted by
assuming complex configuration scenarios and analyze the algorithm run-time
using an ideal computer. The practical evaluation is performed using the
implementation on a sample multi-tier application deployed on Amazon EC2.

1.4 Our Contributions
The main contribution of this thesis is a novel approach in the security evalu-
ation of multi-tier virtual infrastructures, inspired by vulnerability assessment
approaches for traditional computing environments and applied for the case
of the Amazon infrastructure cloud. The security evaluation consists of an
automated security audit process of the currently deployed configuration with
regard to a given policy specifying the desired state of the configuration, and
an abstract framework for evaluating the security impact of configuration
changes.

Besides the main contribution stated above, multiple minor contributions
can be pointed out. A comprehensive description of the underlying archi-
tecture of the Amazon infrastructure cloud is presented, which was publicly
only available in incomplete and fragmented form. We provide a comparison
of two methods for deploying multi-tier virtual infrastructures on Amazon
with regard to the provided isolation levels. Finally, a data model for repre-
senting the configuration of Amazon deployments is presented and integrated
into a larger data model capable of representing configurations of different
virtualization systems.
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1.5. THESIS OUTLINE

1.5 Thesis Outline
The remainder of this thesis is structured the following way:

Chapter 2: We will give a brief introduction of cloud computing, virtual-
ization and the architecture of Amazon Web Services. This will give
the reader enough background information to understand the problem
space we are working in.

Chapter 3: A literature review of related work will be presented covering
the areas of virtual machine security and network security analysis.

Chapter 4: In this chapter we will shortly present the existing SAVE proto-
type for analyzing private clouds.

Chapter 5: We will present our extension of the SAVE prototype for the
discovery of public infrastructure cloud configurations. In particular
focusing on Amazon EC2.

Chapter 6: In this chapter we will present our main contributions for the
security analysis of public infrastructure clouds. We are focusing on
multi-tier applications deployed on Amazon EC2. The analysis consists
of discovering and verifying reachability and vulnerability properties
of multi-tier services, and an evaluation of changes occurring in the
configuration in terms of vulnerability implications.

Chapter 7: We will evaluate and present results of the implementation of
the analysis methods presented in Chapter 6.

Chapter 8: This chapter contains an outlook of future work and presents
questions remaining open.

Chapter 9: We will conclude the contributions presented in this thesis.
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Chapter 2

Background

In this chapter we will present the background information required for under-
standing the remainder of this thesis. The explanation of Cloud Computing
given in Chapter 1 will be extended with further technical details and clari-
fications. Virtualization, the fundamental technology of Cloud Computing,
will be explained from a technical perspective including the various forms
of virtualization depending on the virtualized resource. We will present the
underlying architecture of Amazon Web Services (AWS) as an example of
the architecture of a public infrastructure cloud provider, and for becoming
familiar with the architecture for later analysis purposes.

2.1 Cloud Computing
In this section we will clarify and explain the different kinds of cloud computing,
although we will not deal with the technical details which will be presented
in Section 2.2.

2.1.1 Service Types
Cloud computing is a broad term combining several different types of service
offerings. In general we distinguish between Software, Platform, and Infras-
tructure as a service, which are offered by the cloud provider. The main focus
of this thesis lies on Infrastructure as a Service, also called Infrastructure
Clouds, but for comparison reasons the other types of offerings are also briefly
presented.

Software as a Service (SaaS) is the most visible of the three service
types, because end-users typically interact with this service directly and
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2.1. CLOUD COMPUTING

perceive that they are more common than the other service types, which are
typically hidden from the end-users. Part of SaaS are web applications like
web-based email or project management, for instance, Google’s Gmail and
Salesforce.com Customer Relationship Management (CRM).

Platform as a Service (PaaS) is a new kind of offering where a platform
is provided for customers to deploy their applications. The platform provides a
complete application stack, therefore the customer is not required to maintain
its own server with the components for the application stack, thus reducing
its maintenance costs. Furthermore, the platform itself is often built to ensure
scalability and fault-tolerance of the deployed applications, i.e., the platform
can cope with usage spikes, which might overwhelm the server infrastructure
operated by an individual customer himself.

Common examples for PaaS are the Microsoft Azure Platform [Mic10]
(.NET application stack), Google’s App Engine [Goo10] (Java and Python),
and Heroku [Her10] (Ruby on Rails).

Infrastructure as a Service (IaaS) offers basic infrastructure resources,
like computing, networking, and storage, to the customers, therefore provides
the most flexibility and freedom of choice. Popular providers of IaaS are
Amazon Web Services, RackSpace, and GoGrid.

Computing resources are provided in the form of virtual machines. The
customer creates a disk image of an operating system installation containing
all his required services and software, deploys this image to the IaaS provider,
and spawns an arbitrary amount of instances based on this image. The
customer can customize its image to an arbitrary extend, therefore has the
most flexibility in terms of application stack and platform. Unlike in the
PaaS model, the customer has to maintain its platform resulting in additional
maintenance and administration costs. IaaS is only advantageous compared
to PaaS if the additional flexibility is leveraged. The number of instances can
be adjusted depending on the workload of the application, i.e., increase the
number of instances if the application faces a traffic spike and decreases when
the workload has normalized again. This presumes that the application is
designed with vertical scalability in mind, i.e., the application can leverage an
additional number of instances, which can be a challenge for the application
developers.

Different networking solutions are offered depending on the cloud provider.
GoGrid and RackSpace use hardware-based VLAN separation for isolating
different customer networks. Amazon uses a software-based approach realized
with packet filters called Security Groups. Customer virtual machines can be
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2.1. CLOUD COMPUTING

part of a security group and the associated policy applies to inbound traffic
for these VMs. Furthermore, Amazon restricts the traffic a VM receives
and therefore prevents packet sniffing. Another networking option offered
by Amazon, and in preparation at GoGrid, are Virtual Private Networks, or
Virtual Private Clouds in Amazon’s nomenclature. The VMs in the VPN/VPC
are separated from the publicly reachable instances on the network and are
connected through a VPN-gateway with an existing enterprise network. It
enables enterprises to seamlessly extend their network into the cloud and
leverages its computing and storage resources.

Storage can be provided in different ways varying among the multiple IaaS
providers. Four different forms can be identified in the currently available
providers: NAS-like, SAN-like, API-based data objects, and Virtual Machine
storage. A virtual machine has typically a fixed-size data storage available,
which is equivalent to a harddisk in a regular desktop or server computer.
In some cases this type of storage is only intended to be used for temporary
data and is itself non-persistent, i.e., after the machine terminates the data
is lost. NAS-like storage, like GoGrid Cloud Storage, is accessible from the
VMs on a file-based level using standard protocols like CIFS. Amazon Elastic
Block Store (EBS) is a SAN-like storage type, which appears to the VM
as an additional block-device. An EBS volume can be attached to different
VMs, but not to multiple VMs simultaneously, and the size can be adjusted
presuming the filesystem on the block-device is resizable as well. The last type
of storage is accessible through an API and holds data objects up to a specific
size, e.g., in the range of several gigabytes. This is a very scalable kind of
storage, i.e., one can store an arbitrary amount of objects, and also provides
the possibility of distributing these objects using a Content Distribution
Network offered by the provider. Examples of this kind of storage are Amazon
Simple Storage Service (S3) and RackSpace CloudFiles.

2.1.2 Cloud Types
Along the different service types cloud computing can be divided into, there
also exists different types of clouds. In this section we will discuss a simplified
model of dividing clouds into the categories Public, Private, Community, and
Hybrid, as presented in [MG09b]. We will also briefly discuss a more complex
model, the Cloud Cube Model, which takes several different properties into
account.

Public Clouds are offered by a cloud provider to the general public as
a service and typically hosts multiple customers on shared resources. The

7



2.1. CLOUD COMPUTING

example providers described previously, e.g., Amazon Web Services, all provide
public clouds.

Private Clouds are operated only for a specific customer either on- or
off-premise by the customer itself or a third-party operator. Potential security
problems with multi-tenancy on shared resources in public clouds, e.g., side-
channel attacks, are avoided in the private cloud offering.

Community Clouds are providing services for a limited set of customers
from a specific community, e.g., an organization, which have similar require-
ments. They are either operated by in-house staff or a third party, and hosted
either on- or off-premise.

Hybrid Clouds are the results of the composition of private and public
clouds. For example a customer can run his critical and security-sensitive
processes on an in-house operated private cloud, but outsource certain non-
critical processes to a cheaper public cloud.

The Cloud Cube Model is presented in [Jer09] and categorizes clouds
based on four criteria:

• external or internal

• proprietary or open

• perimeterised or de-perimeterised

• insourced or outsourced

The first criterion determines if the resources of the cloud are located on-
or off-premise. The second one identifies potential interoperability based
on the technology used. Open technology allows interoperability between
different cloud providers and proprietary technology can lead to a vendor
lock-in. The third criterion is used to determine if the cloud resources are
part of the customers network perimeter or not. Virtual Private Networks,
e.g., Amazon’s VPC, can transform a typically de-perimeterised cloud to
a perimeterised one. The last criterion states if the cloud is operated by
in-house staff or a third party. These criteria can be visualized as shown in
Figure 2.1.
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2.2. VIRTUALIZATION

Figure 2.1: The Cloud Cube Model ( c©Jericho Forum, [Jer09])

2.2 Virtualization
Infrastructure clouds are driven by two major technological components:
virtualization of resources and management software. In this section we will
briefly explain how the virtualization of different resources is performed, in
order to get an insight into the underlying technology of cloud computing.

Virtualization abstracts from physical resources in a way that several
virtual resources are multiplexed on a physical one. The virtual resources
are isolated from each other and allow higher utilization in multi-tenancy
environments. Virtualization exists for various forms of resources, but in this
section we will only focus on the resources relevant for cloud computing in
the form of IaaS: Machine, Network, and Storage.

2.2.1 Machine Virtualization
In Chapter 2.1 we already explained that computing resources in infrastruc-
ture clouds (IaaS) are typically consumed using virtual machines. Using
virtualization, a physical machine is divided into several virtual ones each
running its own operating system. The system providing the abstraction of
the hardware and managing the virtual machines is called Hypervisor or Vir-
tual Machine Monitor (VMM). Examples for such VMMs are Xen [BDF+03],
VMware ESX [VMw09], and KVM [Qum06].

Machine virtualization can be implemented using different techniques
[VMw07]. Full Virtualization allows an unmodified operating system to run
in a virtual machine by leveraging either methods for virtualization provided
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2.2. VIRTUALIZATION

by recent CPUs, e.g., Intel VT-x or AMD-V, called hardware-assisted vir-
tualization or using binary translation, i.e., modifying instructions of the
operating system to be suitable for running in a VM. Binary translation is
becoming less common than CPU-assisted full virtualization due to perfor-
mance reasons and the prevalence of CPUs with full virtualization capabilities.
Another technique called Paravirtualization only allows a specially modified
operating system, which is aware that it is being virtualized, to run in a VM.
This technique generally yields the best performance results, but proprietary
operating systems like Microsoft Windows can not be modified and have to
be run using full virtualization.

Xen and VMware ESX are using both paravirtualization and hardware-
assisted full virtualization. This hybrid approach yields best performance
results for operating systems which can be modified, and allow proprietary
operating systems to run as well using full virtualization. KVM on the
other hand uses mainly hardware-assisted full virtualization for all operating
systems and only has a limited support for providing paravirtualized devices,
e.g., network or block devices using virtio [Rus08].

2.2.2 Network Virtualization
Network virtualization can be applied to different components in the net-
working area. The physical network itself can be abstracted and divided into
several virtual networks by different technologies including among others:
VLAN, MPLS, ATM, or VPN.

The physical network interface can also be virtualized by creating multiple
virtual interfaces for the different virtual machines running on a physical
machine. The virtual interfaces are connected to a virtual switch, e.g., this
can be a bridge device on a Linux setup, which interconnects the virtual
machines locally and typically also provides connectivity to external networks
through the physical interface. The virtual interfaces can also be combined
with VLAN tagging to provide isolation on the network level.

In recent development, Cisco now provides a virtual switch implemen-
tation (Cisco Nexus 1000V series [Cis10]), which unifies the management
of physical and virtual switches, and also provides advanced functionality
compared to regular bridge devices. The OpenSolaris Crossbow project also
provides advanced network virtualization to the OpenSolaris platform includ-
ing functionality for QoS and bandwidth management. In case the physical
network interface supports virtualization, Crossbow can directly assign hard-
ware resources to the virtual interface [TDSB09], which increases performance
compared to conventional software-based approaches.
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2.3. AMAZON WEB SERVICES ARCHITECTURE

2.2.3 Storage Virtualization
Storage virtualization can be applied either locally on the physical harddisk of
the machine or on storage provided via network. The most common method of
storage virtualization for locally attached harddisks is to use logical volumes on
top of the disk. Linux Logical Volume Manager (LVM) is a way of managing
and creating logical volumes which can be used as backend storage devices
for virtual machines. Unlike partitions of a harddisk, logical volumes can be
flexibly created, resized and deleted. Another, but less efficient, method is to
use a loopback device which provides a block-device backed by a regular file
on the filesystem.

For network-based storage, i.e., Storage Area Network (SAN), block-
devices are exported over the network and the consumer does not know how
the block-device is backed on the provider side. For example in Sun’s ZFS
(Zettabyte File System), logical volumes called ZVOLs can be created in a
storage pool based on multiple physical harddisks, which are then exported
via iSCSI to a consumer. Another example for block-devices exported via a
network is GNBD (Global Network Block Device), which is part of Red Hat’s
cluster suite and suitable for creating a cluster file system using Red Hat’s
Global File System (GFS).

2.3 Amazon Web Services Architecture
Amazon Web Services is a collection of IaaS offerings, which includes the
Elastic Compute Cloud (EC2) for computing, Simple Storage Service (S3)
and Elastic Block Storage (EBS) for storage, and Virtual Private Cloud
(VPC) and Security Groups for networking. Further services are offered,
but they are not of particular interest for our scenario. In this section we
will present the underlying architecture of the previously mentioned services.
This section is mainly based on [Ama09b, RTSS09] and information obtained
through XenStore, a configuration repository on Xen accessible by virtual
machines. Further details about the underlying architecture can be found in
Appendix A.

2.3.1 Compute
The Elastic Compute Cloud is Amazon’s service infrastructure cloud which
allows customers to deploy and run virtual machines on Amazon’s infrastruc-
ture. Virtual machines, also called instances in EC2, are provisioned from a
machine template called Amazon Machine Image (AMI). A machine image
contains an installation of an operating system and services required by the
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2.3. AMAZON WEB SERVICES ARCHITECTURE

customer. Typically, virtual machines are directly connected to the Internet
and protected by a firewall-like concept called Security Groups.

The machine virtualization is based on a highly customized Xen hypervisor
using paravirtualization [Ama09b]. EC2 also allows Windows-based instances,
which implies that for these instances they have to use full virtualization.
The Xen management domain is based on a version of Linux.

Fault Separation: Amazon EC2 provides fault separation by using mul-
tiple geographic regions, which are further divided into Availability Zones.
Availability Zones can be considered as physical independent data centers
located in one region. At the time of this writing, Amazon provides four
regions: on the west and east coast of the US, one in Europe, and one in Asia
Pacific with at least two availability zones per region.

2.3.2 Network
In the typical usage scenario every VM will have one private and one public
IPv4 address dynamically assigned. Exceptions to this are Virtual Private
Clouds, which only have one IPv4 address from a user-defined IP range
assigned, and Elastic IP, which assigns a static public IPv4 address to a VM.

According to [Ols08], a VM only has one network interface with the private
address attached to it and NAT is used to map the public address to the
private one. The Xen networking setup is a routed one and does not use a
bridge device as a virtual switch. Besides using NAT on the IP layer, they
also employ NAT on the MAC addresses. Every packet leaving or entering a
VM will have EF:FF:FF:FF:FF:FF as its MAC address.

Security Groups are Amazon’s concept for a set of inbound firewall rules
associated with a name [Ama09b]. Outbound traffic is not restricted by a
security group and always allowed. A virtual machine can be a member of
one or multiple security groups, i.e., the traffic for that particular VM is
allowed based on the union of rules specified in the associated security groups.
Members of the same security group can only communicate with each other
if explicitly allowed in the rules set.

The rules of a security group are applied in the management layer of the
host, i.e., the firewalling is done outside the VM. Security groups can be used
to simulate security perimeters like a DMZ or internal servers when using
other security groups as sources in the rules set. The default firewall policy
is Deny, therefore all rules in a security group are Accept rules. Rules can
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allow traffic based on protocol (TCP, UDP, ICMP), port range, and source
(IP range or another security group).

Packet Spoofing & Sniffing is prevented by a packet filter running in the
management layer of the system, where all packets are passing through. The
packet filter drops all packets from a VM, which do not have the source IP or
MAC address associated with that particular VM. We have to assume that
the management layer is aware of the L2 and L3 addresses of all VMs running
on that particular host, and therefore sets up iptables and ebtables rules to
prevent packet spoofing. Furthermore, sniffing packets destined for other VMs
running on the same host can not be achieved by a VM, even though the
network interface can be placed into promiscuous mode. We conclude that
further iptables and ebtables rules exist, which only allow packets transporting
to a VM if they have the correct destination addresses.

Intrusion Detection is implemented on each host, at least to some degree,
which allows the detection of port scans performed by a VM. Port scans
violate the Amazon EC2 Acceptable Use Policy (AUP) and are automatically
detected and blocked.

Virtual Private Clouds (VPC) is a concept of integrating cloud resources
into the existing enterprise IT infrastructure [Ama10b]. VMs running in the
VPC are isolated from the Internet and other resources of the cloud, and
have an address assigned from a user-defined network range. The VPC is
connected via a VPN gateway to the enterprise network. Routing information
between the VPC router and the enterprise router are exchanged, which allow
a seamless connection between the enterprise and cloud resources.

2.3.3 Storage
Amazon Web Services provide different types of storage for the VMs. In this
section we will explain the different types and their individual advantages
and disadvantages.

Instance Storage is a non-persistent storage attached to each VM locally,
which has the highest performance of all three available storage types. The
storage is only temporary and will not be available to a VM after termination,
but remains available to a VM after reboots. The instance storage is visible
to a VM as three partitions for root, swap, and extra storage space. Host-
based storage virtualization on Linux commonly uses LVM or loopback
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devices, where the former has the better performance characteristics. Based
on information obtained from XenStore, the root partition is backed by a
loopback device and the other two partitions are based on logical volumes. The
partition for extra storage space also utilizes copy-on-write for the possibility
of efficient wiping of the volume after the VM terminates, i.e., only the
modified areas have to be wiped instead of the whole volume.

Elastic Block Store (EBS) is a persistent storage with high performance,
availability and reliability. When an EBS is attached to a VM it will appear
as a block device in the VM. EBS has a high reliability property, although it
is not as reliable as S3, because EBS data is only replicated within its own
availability zone. The characteristic of EBS indicates that it is based on a
SAN setup and XenStore information confirm that it is using GNBD. Further
details about EBS are available at [Rig08].

Simple Storage Service (S3) is the most reliable storage of the three dif-
ferent types provided by Amazon Web Services, because the data is replicated
among multiple data centers. The structure of S3 is object-oriented, i.e., all
data is stored in objects of up to 5 gigabytes of data, which are organized in
so-called buckets. S3 can be used to store snapshot of EBS volumes, hereby
acting as a highly reliable backup mechanism for EBS.
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Chapter 3

Literature Review

In this chapter we will cover the literature of two research areas: virtual
machine security and network security analysis. In the former case we will
discuss a broad spectrum of security challenges and solutions for virtual
machines, and also briefly cover security management in virtualized environ-
ments. Since network security is a very broad area, we are focusing on two
particular aspects namely reachability analysis and vulnerability assessment
using attack graphs.

3.1 Virtual Machine Security
Infrastructure clouds make significant use of virtualization and the clouds
provide computational resources which are consumed by the means of virtual
machines. Due to this strong connection between these two technologies,
security problems associated with virtual machines will have an impact on
the overall security of infrastructure clouds. Therefore a review of existing
literature on the topic of virtual machine security will give us a useful founda-
tion for analyzing the security of infrastructure clouds and provides an insight
in the underlying security challenges.

3.1.1 Overview
A comprehensive overview of virtual machines and their corresponding security
challenges and benefits is presented in [GR05], which we will summarize in
this section and use as a thread for further details of the exposed challenges
and solutions in the remaining sections.

Virtual machines provide a high degree of flexibility by allowing users to
easily create, copy, snapshot, rollback, and migrate them. This flexibility
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results in major adoption of virtual machines by users for different purposes,
e.g., for testing of software or configurations using snapshots and the rollback
mechanism.

Security Issues

The authors of the paper extracted the following list of security issues related
to virtual machines.

Scaling represents the problem that users now have multiple virtual
machines, e.g., for testing and development purposes, instead of a very few
number of physical ones. Therefore the total number of machines drastically
increases within one organization and the workload on the security systems
will increases accordingly. Diversity in operating systems, OS versions and
patch levels increases the complexity in the security management of the
infrastructure. VMs typically result in a high diversity, because users have
multiple snapshots of VMs and testers can have a collection of different VMs.

Transience is another security issue induced by the flexibility of virtual
machines. It mainly deals with the problem that VMs appear and disappear
very rapidly in the network which makes security management, e.g., patch
management and vulnerability scanning, very difficult. The authors describe
this as the missing of a steady state in the network, where the steady state
means that all machines are patched and properly managed. The Mobility
of a VM, i.e., the VM can easily be copied or migrated, imposes multiple
security problems: all the hosts, the VM will be executed on, have to be
part of the trusted computing base (TCB); sensitive information can leave a
security perimeter or malware is introduced, and the theft of VMs can easily
be done by simply copying a file.

The traditional Software Lifecycle, i.e., a monotonic forward progress
of the software state, is broken by virtual machine’s snapshot and rollback
mechanisms, because the execution of the virtual machine can be forked and
be rolled back. In particular the rollback mechanism induces a lot of problems
regarding freshness of randomness sources used for cryptographic protocols
or critical patches are removed by a rollback. Limited Data Lifetime, e.g.,
for sensitive or cryptographic information, can be compromised due to the
rollback mechanism and that the content of the virtual machine’s memory
might be stored on the disk of the host due to paging, snapshots, or migration.

In traditional computing environments, the Identity of a machine is often
deduced from a properties like the MAC address, the location, or Ethernet
port. Virtual machines however typically use dynamically created MAC
addresses and they might migrate from one physical host to another, therefore
properties like the location or Ethernet port will change, and make it difficult
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to assign an identity.

Solutions Directions & Security Benefits

The authors of [GR05] propose two directions to solve the previously described
security challenges: introducing an ubiquitous virtualization layer and having
Virtual Machine Monitor (VMM) assurance. Such a virtualization layer is
based on a high assurance VMM and provides security management and
policy functionality. For example, firewalling or anti-virus detection can be
performed in the virtualization layer, and policy enforcement can control the
VM’s mobility and usage. The role of the VMM is to isolate the VMs from
each other and the correctness of enforcing this property is crucial, therefore
a high assurance VMM is required.

Introducing an extended virtualization layer that overtakes functionality
originally performed in the guest operating systems has a certain number
of benefits. Users do not have to worry about security management, e.g.,
firewalling or anti-virus detection, if these mechanisms are provided by the
virtualization layer and are operated by a central administration staff. Fur-
thermore, these security services are now independent of the guest operating
systems, which results in a higher flexibility because a high diversity of
VMs can be securely managed. Regarding the security issue associated with
software lifecycle and the rollback feature, the virtualization layer could pro-
vide mechanisms to store such sensitive information and to provide strong
randomness.

3.1.2 VMM Security
The security of the Virtual Machine Monitor (VMM) is crucial, because it
provides the necessary isolation between the hosted VMs and typically runs
with the highest privileges on the system.

Introducing a new software layer, such as the one providing virtualization,
inherently increases the complexity of the system, which also increases the
possibility of software security vulnerabilities. A study of the security of virtu-
alization software presented in [Orm07] revealed a variety of vulnerabilities in
the most common virtualization implementations. Such vulnerabilities in the
VMM can lead to the break of isolation, i.e., a VM can access another VMs
resources. In [Woj08], the author presents a way of exploiting a vulnerability
in the Xen virtualization software which gave him access to the management
domain of Xen and thereby access to all other VMs.

Different solutions exist to mitigate security problems in the virtualization
layer which are based on principles of building secure software: formal veri-

17



3.1. VIRTUAL MACHINE SECURITY

fication, security by isolation and disaggregation, and reducing the trusted
code size.

An interesting example for formal verification of a software, which is also
relevant for our topic of VMM security, is the seL4 project [KEH+09], a
formally verified L4 microkernel. The proof verifies that the implementation
in the C programming languages matches the abstract specification of the
system and implies that certain software vulnerabilities, like buffer overflows
and null pointer dereferences, are absent in the implementation. Microkernel
and VMM are very similar (cf. L4Linux [Hoh96], [HL10], [HUL06, HWF+05]),
therefore either a formally verified microkernel acting as a VMM can be used,
as presented in [vT10], or adapting the formal proof for VMMs, although the
size of existing VMMs make formal verification very difficult.

Another approach of improving the security of the VMM is to reduce the
complexity and trusted code base (TCB) by means of decomposition. An
approach for extracting the domain builder functionality of the Xen dom0
into a separate domain was presented in [MMH08]. With a separate domain
builder VM, the user-space of dom0 can be removed from the TCB, because
no privileged functionality for VM construction and management need to
be exposed to user-space applications, e.g., xend. However, in their current
state the dom0 kernel is still part of the TCB due to required interaction
with physical I/O devices. Besides the dom0 kernel, the Xen hypervisor and
the domain builder are part of the TCB.

The recent prototype operating system Qubes OS [RW10] implements,
among other security features, disaggregation of Xen dom0 by establishing
driver domains which are limited to a specific hardware resource by the
means of IOMMU as implemented by Intel VT-d, i.e., the VMM monitors
DMA requests and can possibly restrict them. These driver domains can run
with limited privileges and the overall complexity of dom0 can be reduced.
Thereby a software vulnerability in one of the drivers will not result in a
break of isolation when running in a non-privilege driver domain compared
to running in dom0. IOMMU would also benefit the disaggregation of Xen
using a domain builder VM, because the dom0 kernel could be removed from
the TCB when I/O with physical devices is offloaded to driver domains.

The virtualization architecture NOVA [SK10] uses a minimal microkernel,
with a size similar to the formally verified seL4, and provides virtualization
functionality as user-land applications. Therefore the amount of high privilege
code is reduced to a minimal microkernel-based hypervisor.
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3.1.3 Information Leakage
The multi-tenancy of virtualization and in particular cloud computing in form
of infrastructure as a service, faces the scenario that an attacker will share
the same physical resources as other tenants. This sharing of resources could
lead to information leakage due to known or unknown covert channels.

A very interesting approach was presented in [RTSS09] which consists of
a method for predicting the placements of VMs in the Amazon cloud and
discussing potential side-channels and their implications. The placement is
in particular interesting for attackers who target a specific victim and want
to place a VM on the same physical server. Placing a VM on the same
physical server, i.e., establishing co-residency, will allow further attacks using
side-channel vulnerabilities to extract potentially sensitive information about
the other VM. Work on side-channel vulnerabilities leading to the exposure of
cryptographic keys were presented in [Per05] (Intel HyperThreading), [AKS07]
(CPU branch prediction), and [Aci07] (I-Cache exploiting).

The paper presents two attacks: estimating traffic rates and a keystroke
timing attack. In the first case, an attacker could measure the website traffic
of a competitor, thereby gaining information about the website’s popularity.
The attack uses a cache load measurement and identifies a correlation between
traffic rate and the load samples. The second attack tries to identify keystrokes
in another VM, which could be used to guess the typing depending on the
keystroke intervals, e.g., to identify a typed-in password. The attack uses again
the cache load measurements to identify keystrokes, but they are evaluating
the attack on a private virtualized host rather than Amazon EC2.

Another problem which could lead to information leakage is a result of the
rollback functionality of VMs. Due to the rollback, cryptographic protocols
could be affected either due to reuse of keys or reusing the same random
numbers generated in an earlier run of the protocol. In [RY10] the issue
of randomness problems in cryptographic protocols is discussed and it is
shown how such a problem can be exploited in the case of TLS. In order
to mitigate the problem related to randomness in virtual machines, they
propose a framework for securing existing protocols by the means of hedged
cryptography, which means that cryptographic protocols will provide a weaker
security notion in the presence of a bad randomness source [BBN+09].

3.1.4 Remote Attestation
Remote attestation tackles the problem of assuring that a remote platform
consists of a trusted set of hardware and software resources. This is typically
done in open distributed systems to ensure that the other peers are not
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running malicious software [MMJZ06]. Potentially, remote attestation can
also be used to identify VMs, which was pointed out as a problem in the
overview section, however privacy concerns lead to an anonymous way of
remote attestation called Direct Anonymous Attestation (DAA) [BCC04].

A discussion of different means of attestation for operating systems is given
in [Eng08]. The existing attestation methods are presented: code signing
with public-key cryptography, small and attestable microkernel/VMMs with
late-launch capabilities, property based attestation, semantic attestation, and
read-only operating system images. Furthermore, new methods for attestation
are presented consisting of specialized OS images, OS authentication using
birth certificates, and virtual machine policy attestation.

The Terra [GPC+03] architecture is based on a trusted VMM (TVMM)
which provides two different execution contexts for VMs: open box and
closed box. The first one is equivalent to a regular general-purpose hardware
platform and the second one resembles a special-purpose platform which is
typically found in closed systems like mobile phones and game consoles. The
closed box environment provides, among other capabilities, remote attestation
for assuring remote parties about the integrity of the hardware and software
stack of a VM.

In case of Terra, the attestation process covers the system firmware,
bootloader, TVMM, and the VM. The attestation of the VM distinguishes
between two different kind of VM storage: attested and unattested storage.
The VM owner can specify the VM’s storage kinds on an application specific
case. The authors propose two different methods for handling attestable
storage. The first method is Ahead-of-Time Attestation which attests the
entire VM, including attestable storage, and verifies its correctness before
executing the VM. This is suitable for small, high-assurance VMs due to
the performance of hashing in the startup process. The other method is
Optimistic Attestation where blocks of the disk are hashed on-demand, and
in case of a verification failure of any block the VM execution is stopped
immediately.

The usage of attestation in the area of cloud computing, i.e., trusted cloud
computing was presented in [Kra09] and [SGR09]. The problem is that for
cloud consumers the IaaS providers operate a black box and the consumer
does not have any insights about the underlying security of the architecture.
The architectures presented in the two papers use attestation to assure that a
known and trusted software stack is in use and provides adequate security for
the VMs. For example, [SGR09] makes use of a trusted VMM as presented
earlier.

An example for the usage of attestation in a real-world application is
Enomaly’s Elastic Computing Platform, which is a virtualized systems man-
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agement software, in the High Assurance Edition [Coh10].

3.1.5 Virtual Machine Introspection
In the overview section it became clear that many security services can
be offloaded from the VMs to the virtualization layer. This has numerous
benefits as presented earlier like delegation of security management and OS
independence. We will now present two approaches of providing an Intrusion
Detection System (IDS) and a rootkit detector using inspection capabilities
of the virtualization layer. Examples for inspection capabilities are VMware’s
VMsafe [VMw10] and Xen’s XenAccess [Xen10, PCL07].

The IDS and rootkit detector can leverage certain properties of the VMM
for their advantage according to [GR03]. Isolation will prevent an attacker,
who compromised a VM, to tamper with the IDS. In a traditional computing
environment, attackers can usually tamper with the anti-virus system or Host
IDS since it is running on the same machine. Inspection allows the security
monitoring services to inspect all the states of a virtual machine, i.e., CPU
registers, memory content, I/O devices states etc. A malicious application or
an attacker will have enormous difficulties in evading the monitoring of the
IDS. Furthermore, Interposition, which is already implemented in the VMM
to execute triggers upon the execution of privileged instructions in a VM, can
be used to monitor specific instructions of a VM.

The IDS implementation presented in [GR03] consists of three modules:
a VMM interface, an OS interface, and a policy engine. The VMM interface
allows the IDS to read a VM’s memory and set and receive notifications
on VM operations. The OS interface provides an insight into the operating
system’s data structures and information, e.g., process list. In their current
implementation they use the Linux crash dump analysis tool crash and the
ELF binary information tool readelf for obtaining symbol information from
the kernel. The policy engine consists of a framework which provides a higher
level abstraction on the VMM and OS interfaces, and a set of policy modules
implemented to check certain behavior and monitor a VM. Examples for the
policy modules are a user program integrity detector and a memory access
enforcer. The first one is a polling-based one and periodically hashes the
immutable sections of a program in memory, e.g., of a SSH daemon, in order
to detect modifications due to a backdoor attempt. The other module is
event-based and is triggered in case an attempt is made to modify certain
areas of the kernel, e.g., the system call table.

A rootkit detector was presented in [CSS+09], which is capable of identify-
ing the operating system of a VM without prior knowledge and can discover
the appropriate data structures after the OS is identified. Monitoring the dis-
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covered data structures allows the detection of rootkits, in case unauthorized
modifications of essential data structures happen.

3.1.6 Policy Enforcement
In the overview we discussed problems related to the transience and mobility
of VMs, namely the difficulty of detecting compromised machines and the
possible leakage of sensitive information or infection of the corporate network
due to the migration of infected VMs. An approach to counter these problems
is presented in [MGHW09] using so-called Virtual Machine Contracts (VMC).
Infected VMs can be detected in case the behavior of the VM differs from
the specification in the contract, e.g., a botnet malware opens a new port
for receiving instructions which is not part of the contract. Virtual Network
Access Control can be implemented using VMCs, e.g., a VM is only allowed to
connect to a restricted network to obtain patches in case out-of-date software
is detected. In a similar manner, regulatory compliance, i.e., validating the
usage of encryption, security services etc. in the VM, can be implemented
using VMCs.

A project dealing with the improvement of isolation between VMs and
providing a fine-grained mandatory access control mechanism for inter-VM
communication and resource sharing is sHype [SJV+05]. A sample policy
which can be enforced by sHype is a Chinese Wall policy. This kind of policy
is useful for administrators to prohibit that certain VMs, e.g., two competitors
or workloads with different criticality, are running on the same machine and
are potentially exposed to side-channel vulnerabilities.

3.1.7 Strong Isolation in Virtualized Environments
Strong isolation is crucial for the security of virtualized environments due to
their multi-tenancy and the sharing of common physical resources.

The Trusted Virtual Datacenter (TVDc) project [BCP+08] aims at pro-
viding strong isolation and integrity guarantees to virtualized environments.
Virtual machines and their resources are grouped using an abstraction called
Trusted Virtual Domains (TVD) [GJP+05], which could be based on the
owner of the workload, e.g., TV Dα for customer A and TV Dβ for customer
B. The isolation of the TVDs is realized using the sHype hypervisor [SVJ+05]
on the machine level and VLANs on the network level. Similar work for
providing isolation on the network level using different methods, e.g., VLANs,
VPN, and Ethernet encapsulation, was presented in [CDRS07].

The idea of Virtual Private Clouds (VPC) for isolation in infrastructure
clouds was presented in [WSG+09]. A VPC is typically isolated from other
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cloud consumers, and seamlessly and securely integrated into an existing
enterprise infrastructure, e.g., using a VPN tunnel. The benefit is to lever-
age resources from the cloud provider and integrate such resources in the
existing enterprise infrastructure, while preserving strong isolation on the
cloud provider side. This method is currently offered by Amazon for the
infrastructure cloud [Ama10b], however the underlying physical resources are
still shared among multiple tenants and subject to potential side-channel
vulnerabilities.

3.2 Network Security Analysis
In this section we focus on three different aspects of network security analysis.
First, we consider performing reachability analysis of a network in a static
manner and discuss advantages of static analysis in this context. We then
present work in the field of infrastructure discovery and automated analysis
and transformation using VLANs. Finally, we discuss network security
analysis based on attack graphs and how attack graphs can be used to
compute security metrics for the current network configuration.

3.2.1 Static Network Reachability Analysis
This section summarizes the work presented in [XZM+04].

Analyzing the reachability of a network is useful for verifying the intention
of the network designer that certain host in a network should be able or not to
communicate with each other. The dynamic approach to reachability analysis
could be as simple as performing ICMP echo requests or trace routes from
one host to another. The authors argue that a static approach is desired
and present a model for calculating the potential network reachability in
consideration with dynamic influencing factors like routing protocols, packet
filtering, and packet transformation. The relevant parts of this work will be
presented in this section.

The analysis is performed on the configuration files of the routers in the
network, which are assumed to be stored in a central repository for backup
purposes.

Advantages of Static Analysis

The main problem with dynamic reachability analysis is that only the current
snapshot of the network is analyzed, i.e., only the current selected route
and link is considered. The route may change or a link may fail and the
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verified reachability does not hold anymore. Furthermore, packet filtering or
transformation of the current path may allow ICMP echo requests, but may
filter all other traffic, therefore alters the result of the reachability analysis.

From a practical point of view, it is not feasible to perform a reachability
analysis using ping or traceroute in a large network, since the complexity is
quadratic with regards to the number of hosts, i.e., each host has to ping all
other hosts in the network. A static approach has the advantage that the
reachability can be verified for numerous different packet types and therefore
can take into account potential packet filtering and transformation. A static
analysis can be performed on a desired or current configuration, which allows
a network designer to analyze new network configurations or verify properties
of the current configuration.

Reachability Analysis

The model presented in the paper also considers changes of the network due
to dynamic routing protocols, in order to be able to verify reachability even if
links fail. This is not relevant for our analysis from a security point of view,
where we are mainly interested in the effect of packet filters on the reachability.
Therefore, I will only presented a simplified model without consideration of
dynamic network changes.

Consider a graph (V,E,F) where V is the set of routers, E is the set of
directed edges defining the connectivity between routers, and F is a labeling
function for annotating the edges, e.g. Fu,v ∈ F represents the flow policies
for packets from router u to router v. Ri,j denotes the reachability from
router i to router j and is the subset of packets the network will transport.

Since we are not interested in dynamic network changes, the reachability
can be calculated easier than demonstrated in the paper:

Ri,j =
⋃

π∈P(i,j)

⋂
<u,v>∈π

Fu,v

where P(i, j) denotes the set of all loop-free paths from i to j in the physical
network topology. The Ri,j is equivalent to the upper bound estimator R̂U

i,j

presented in the paper when ignoring the effect of routing protocols. This
models only the effect of the packet filters and it contains all the packets
for which at least one allowed path in the network exists. The lower bound
estimator contains the packets for which all paths are allowed:

R̂L
i,j =

⋂
π∈P(i,j)

⋂
<u,v>∈π

Fu,v

The paper presents algorithms for computing the lower and upper reacha-
bility bound estimators. For the lower bound, they remove all edges which
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can not be part of the path from i to j, followed by the intersection of Fu,v for
the remaining edges. The computation of the upper bound is closely related
to computing the transitive closure.

Verification of Network Isolation

The reachability upper bound can be used to verify that two customers, say
A and B, are isolated from each other under any circumstances. The isolation
is given iff ∀i ∈ A, j ∈ B : RU

i,j = ∅. There exists no path from any host i in
customer A’s network to any host j in B’s network, and vice versa.

Further Work

The previously described work on static reachability analysis found further
advancements in the papers presented in [KL09b, KL09a]. They consider a
more complex model including different kinds of packet transformations, a
graph based on routers and subnets, and propose algorithms for computing
reachability and solutions for reachability queries.

3.2.2 VLAN Configuration Automation
The focus of the work presented in [KSS+09] is the automated analysis of
VLAN configurations for performance and security reasons. The complexity
of these configurations can become immense in large enterprise or university
network environments, therefore requires automation tools for analyzing
the configuration. Common misconfigurations in VLAN settings can result
in redundant or missing network links, which can induce performance and
security issues.

They propose a set of algorithms to support network operators in VLAN
configuration tasks, and visualization and validation of the configurations.
The algorithms process a graph of the network, which is constructed using
the network configuration files of routers and switches, and network link
information for the L2 topology obtained from sources like the Cisco Discovery
Protocol (CDP). The individual algorithms are very simple and straight-
forward, e.g., applying graph traversal or shortest-path algorithms.

Although they mention security issues induced by redundant links due
to an increased possibility of ARP poisoning attacks, their main focus is to
tackle performance issues and support the network operators in configuring
switches.
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3.2.3 Attack Graphs
Attack graphs are a way to model network risks in a network using a graph-
based approach, where nodes represent a possible attack state, e.g., user
privilege escalation, and the edges represent a way of changing states, e.g.,
using an exploit with certain pre- and post-conditions [SPG97, PS98]. An
elaborate review of literature on attack graphs from the year 2005 can be
found in [LI05].

Attack graphs can be constructed by security experts, however this man-
ual approach becomes very difficult due to the scalability of the problem.
Therefore, an automated approach for the construction and analysis of attack
graphs is desired. In [SPEC01] an early tool for the construction and analysis
of attack graphs was presented. It uses manually obtained information about
attacker and exploit capabilities, and automatically gathered information
about the machine configurations and vulnerabilities, in order to construct an
attack graph. A shortest-path for the graph is computed which represents the
most likely path an attack will take. A similar analysis using shortest-path
was also discussed in [SPG97, PS98]. An approach based on symbolic model
checking for automatic and efficient graph construction was presented in
[SHJ+02]. The authors of [SW04] demonstrate a toolkit for the analysis and
construction of attack graphs.

Visualization of reachability, attack graphs, and attack paths is very
important for administrators in order to effectively leverage these tools and
apply the obtained results for improving the security of the network. Sample
work in the visualization of attack graphs can be found in [WLI08, WLI07].

Topological Vulnerability Analysis

One of the most comprehensive approaches in attack graph construction and
analysis is Topological Vulnerability Analysis (TVA) presented in multiple
publications [JLSW09, JN07]. The main idea is to analyze dependencies of
attack exploits, in order to find paths of an attacker to compromise specific
targets in the network. Information from vulnerability scanners, which provide
detailed information of isolated vulnerabilities, are gathered and combined.
Based on the attack graphs they can propose changes in the configuration to
increase the network security, and an interactive graph visualization tool can
help administrators in finding network problems.

Only relying on a vulnerability scanner can limit the insights gained
into the possible vulnerable services of a host. For example, client-side
vulnerabilities are not covered by vulnerability scanners. Therefore, a new
approach was presented in [NEJ+09], which correlates information of a asset

26



3.2. NETWORK SECURITY ANALYSIS

management database with a vulnerability database. For instance, a host
is running a specific version of a web browser, which is noted in the asset
database, and the vulnerability database contains information about that
particular version of the web browser.

Several limitations of TVA were pointed out in [LI05]:

• Exploit information, i.e., pre- and post-conditions, entered by hand

• Firewall and router rules not automatically imported

• Poor scaling to large networks

• Requires low-level attack details

Furthermore, a general problem of using vulnerability scanners on production
systems is that the probes of the scanner can cause problems and damages
on the systems, e.g., due to aggressive behavior of the probes.

Security Metrics using Attack Graphs

Security metrics are important in order to be able to judge network security
based on quantitative data [Jaq07]. Using security metrics derived from
attack graphs, one can make decisions on the present vulnerabilities and risks
in the current network configuration.

A formal framework for calculating security metrics based on attack graphs
was presented in [WSJ07a, WSJ07b]. The basic idea is to measure attack
resistance, i.e., the resistance of each type of exploits regarding effort and
time, and to provide a framework for calculating cumulative resistances with
defined composition operators.

A probabilistic approach for computing security metrics using attack
graphs was presented in [WIL+08]. The idea is to convert vulnerability
ratings into probabilities, i.e., the probability an attacker can and will execute
a certain attack to change from one attack state to the next. They present
how to compute cumulative scores even in the presence of complex attack
graphs with cycles.

Another way of approaching the problem of deriving security metrics
from attack graphs is given in [MBZ+06]. The authors adapted the Google
PageRank algorithm [BP98], which was invented for ranking the popularity
of websites based on the number of incoming links, to attack graphs. Each
node in the ranked attack graph will have a rank computed by the PageRank
algorithm, and the total rank of all nodes can be used to compute a security
metric. However, the model of the PageRank algorithm is not intuitively
adaptable to attack graphs, because it considers a user which will abort a

27



3.2. NETWORK SECURITY ANALYSIS

path at any given time with a certain probability, and starts a new path at
a random other node. A focused attacker will typically not abort its attack
path at any given time, but only when the path turns out too difficult or
the desired state is reached. The PageRank for attack graphs model is more
suited for automated attacker, e.g., a worm exploiting random machines.

Machine learning, and in particular graph neural networks (GNN), are
used for applications like website ranking. As we showed earlier the adaption
of the Google PageRank algorithm to attack graphs, it is not surprising that
machine learning/GNNs are used for the ranking of attack graphs as presented
in [LSNH+09].
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Chapter 4

Existing Prototype: SAVE

The existing prototype built by IBM Research for performing security audits
of virtualized systems is called SAVE. SAVE stands for Security Audits of
heterogeneous Virtual Environments and focuses on virtualized environments
where the auditor has full access to the underlying configuration.

In this chapter we will briefly explain the functionality of the existing
prototype, since we will built upon it and extend it for infrastructure clouds.
SAVE consists of a discovery component, where the configurations of the
virtualized systems are gathered and translated into a data model called
Realization model, which basically represents a detailed view of the low-
level configuration. The second component is the analysis of the low-level
configuration stored in form of a realization model. Currently the analysis is
focused on identifying isolation properties of resources, e.g., to verify that two
different tenants do not have common resources. A simplified model, called
the Logical model, can be constructed based on the analysis, which represents
the resource associations of tenants.

4.1 Configuration Discovery
The configuration discovery phase is able to gather low-level configuration
information from various types of systems including:
• Xen
• VMware
• IBM pSeries
• LibVirt
• Linux

The way these configuration information are obtained differs between the
systems. Xen and VMware provide an API which allows the gathering
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of such information. IBM pSeries servers are controlled by a centralized
administration host from which the configuration of all managed servers can
be retrieved. For LibVirt and Linux based systems, we obtain configuration
information by performing a SSH login on these systems and execute qualified
commands.

The discovery phase takes as input a list of hosts and associated credentials
in form of a XML file. The credentials are either for a SSH login in case of
pSeries, LibVirt, and Linux, or API credentials in case of Xen and VMware.
For each host in the list, we try to run the discovery probes for the various
systems mentioned previously, and in many cases we can terminate the
discovery earlier upon successfully executing certain probes, e.g., if the Xen
probe succeeded then the host can not have a VMware hypervisor installed
and we can skip the VMware probe. The output of the probes for all hosts are
gathered in a discovery XML file used for the translation into the realization
model.

The translation phase consists of multiple translation modules, one for
each of the supported systems, which are able to translate the system-specific
low-level configuration into the generic realization model. The complete
discovery information are translated into one realization model which can be
used for the analysis of the discovered systems.

4.1.1 Realization Model
The realization data model for expressing the low-level configuration of the
various virtualization systems is given in Appendix B.1. In this section we
will give a brief overview of the model without going into the specific details.
Basically the model can be subdivided into four sections: physical machine,
virtual machine, storage, and network.

Physical Machine: In the upper-left part of the model is the physical
machine related configuration expressed. The main focus is the physical
machine, the hypervisor, and the management operating system. Physical
devices are also associated with the physical machine.

Virtual Machine: The virtual machine related configuration is expressed
in the upper-right part of the model. Depending on the virtualization system,
the VM can be of different type and is associated with a physical machine,
and storage and network resources.
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Storage: The lower-right part of the model represents the storage configu-
ration. It differentiates between a front- and back-end device. The front-end
can be system specific, e.g., a VMware disk, and the back-end can be provided
by multiple sources. Typically the back-end is based on a file used as a disk
image or a block-device. Both can be locally or served over the network, e.g.,
by a NAS or SAN provider.

Network: The part of the model expressing the network related configura-
tion is the most complex one and in the lower-left part of the model. The
main components of this part are network interfaces and switches connecting
interfaces through ports both in physical and virtual forms.

4.2 Analysis
The analysis of the realization model is currently focused on identifying
isolation properties and uses a graph coloring algorithm. The input of the
analysis is the realization model and a specification for the coloring. The
specification defines the nodes to start the coloring from and which colors
to use, and the rules for the following of edges in the coloring process. For
example a node with a certain property X should have the seed color blue
and a node with property Y always red. We then define in the specification
how the colors are propagated from these two seed nodes to the rest of the
graph, e.g., always retain the color when traversing from node with property
X to a node with property Z.

4.2.1 Logical Model
After the coloring of the realization model is completed, we can construct
a logical model from the colored realization model, which focuses on the
resource usage within the color domains and how the domains are isolated
from each other. Resources with the same color are grouped together in
a logical domain, and in case one resource has multiple colors, a possible
intersection of logical domains exist, i.e., an isolation break. The logical
model is illustrated in Appendix B.2.

4.3 Examples
In this section we will give a selection of examples in order to illustrate the
functionality and capabilities of the SAVE prototype. We will demonstrate
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all three steps of the process, namely the configuration discovery and repre-
sentation in the realization data model, the analysis of the realization model
using graph coloring, and the transformation of the analyzed model into a
logical representation.

4.3.1 Simple Realization Model
A simple example for a realization model constructed from a Xen discovery
probe is illustrated in Figure 4.1. Since only the Xen discovery probe was
used in this example, the produced realization model is very simple but
nevertheless illustrates the general idea of the output of the SAVE discovery
process.

Figure 4.1: Simple Realization Model Example

It basically shows one physical server running the Xen hypervisor with
two virtual machines hosted on that machine, where one virtual machine
is the Xen dom0. The other VM is connected to two types of resources:
storage in form of a VMDisk and a network device. The LinuxOS node is the
management OS of Xen running in the dom0 VM and is providing networking
to the VMs in form of a bridged setup, i.e., all VMs are connected to a bridge
device within dom0. Since the model is constructed from data only provided
by a Xen probe, we do not know how the storage to the VM is provided in
the Linux OS, for which we would require the information from the Linux
probe.

32



4.3. EXAMPLES

4.3.2 Complex Colored Realization Model
This example demonstrates a realization model constructed from the discovery
of a real-world VMware server. Due to space reasons, the coloring policy
for the analysis of the model and the colored model itself are presented in
Appendix C.1.

The blue domain is the management domain controlling the management
operating system and virtual machine monitor of that particular physical
server. The red domain contains the virtual machines and their resources,
which are using the network filesystem located in the lower right of the model.
Based on these two seed nodes, i.e., the management OS for blue and the
filesystem for red, the rest of the realization model is colored according to
the given coloring policy.

4.3.3 Logical Model
Figure 4.2 illustrates the logical model obtained from the previously described
analyzed realization model, but reduced to one logical domain, i.e., the red
domain.

Figure 4.2: Logical Model Example

The logical model illustrates the isolation properties for the discovered
VMware server configuration. Since the red logical domain is completely
separated from other logical domains, e.g., the blue one, the two domains are
isolated from each other and do not share common resources.
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Chapter 5

Configuration Discovery for
Public Infrastructure Clouds

In this chapter, we describe what kind of information we can discover in
Amazon EC2 and in which degree we have to extend the existing data model,
in order to cope with configurations from public infrastructure clouds and
in particular for Amazon EC2. The existing data model is illustrated in
Appendix B and explained in Chapter 4.

5.1 Discovery & Data Model for Amazon
The first step in the audit process is to obtain the current configuration from
Amazon and transform it into a model suitable for later analysis. Amazon
provides an API for management purposes, which also includes the functional-
ity of extracting the current configuration. We are interested in the following
subset of the available information:
• Instances
• Volumes
• Snapshots
• Security Groups
• Regions
• AvailabilityZones
• VPCs
• Subnets
• VpnConnections
• VpnGateways

The configuration is provided in XML format and we transform it into the data
model illustrated in Figure 5.1. The data model represents the configuration

34



5.1. DISCOVERY & DATA MODEL FOR AMAZON

deployed at Amazon with particular focus on virtual machines and their
resources.

VirtualMachine

id : String

SecurityGroup

name : String

ownerId : String

description : String

SecurityGroupRule

fromPort : Integer

toPort : Integer

protocol : String

groupPair : String

ipRange : String

PhysicalMachine

id : String

MachineTemplate
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ARI : String

Volume

id : String
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IPInterface
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Figure 5.1: Amazon Data Model

A VirtualMachine, or instance in Amazon nomenclature, is provisioned
by a MachineTemplate given by an AMI (Amazon Machine Image), AKI
(Kernel Image), and ARI (Ramdisk Image). The VM is running on a physical
machine which we determine using heuristics based on the IP naming scheme
of Amazon. A VM is a member of one or multiple Security Groups, which
have a set of inbound firewall rules. Furthermore, a VM can have network
and storage resources attached in the form of VIFs (Virtual InterFaces) or
Volumes respectively.

In Amazon’s case, the VM only has one VIF which has a private and
implicitly a public IP addresses attached. The VIF is either attached to an
abstract AmazonNet or VPC (Virtual Private Cloud). The AmazonNet is
equivalent to an Amazon availability zone, i.e., a network within one data
center, and part of a certain geographical Region. Besides local storage, a VM
can also have network storage volumes attached to it, which also provides
the functionality of snapshots.
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5.2 Integrated Model & Discovery for Infras-
tructure Clouds

The isolated data model for Amazon configurations has to be integrated into
the generic data model used within the SAVE project, in order that the
SAVE prototype can handle both public and private clouds using the same
underlying data model. In this section we will briefly discuss the integration
of the models and discovery implementation.

5.2.1 Data Model
The Amazon data model illustrated in Figure 5.1 was integrated into the
existing SAVE realization model. The integrated model is presented in
Appendix B.3. Since Amazon is based on Xen, we extended the Xen virtual
machine host and virtual machine classes for the Amazon case. The rules
of Amazon Security Groups are integrated into the generic filtering rules
part of the networking part of the model, and a VM is a member of one
or more Security Groups. We consider an AmazonNet as a network switch,
i.e., all VMs are connected on the same AmazonNet switch for a specific
availability zone. At the current state of the model, the VPC functionality
has not be integrated yet, because we do not consider hybrid clouds yet. Since
the data model already contained a class for machine templates used for the
provisioning of VMs, the Amazon Machine Template just extends this class
with further attributes. Volumes in Amazon can either be local disks, i.e.,
instance storage, or remote disks, i.e., EBS volumes.

5.2.2 Discovery
The discovery probe for Amazon Web Services is implemented using the
Amazon EC2 Java library (for API version 2009-11-30 [Ama10c]) in less than
170 lines of Java code. The translation from the discovery data in XML into
the integrated realization model is also implemented in Java in around 330
lines of code, which contains all the Amazon specific part related to mapping
discovery data to classes in the data model.
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Chapter 6

Multi-tier Virtual
Infrastructures in Public
Clouds

For hosting enterprise-grade applications and infrastructures, it is important
that common security architectures can be established in the public cloud. One
common security architecture is to split complex applications into multiple
tiers that correspond to security zones, such as Internet, demilitarized zone
(DMZ), and intranet.

This chapter shows how multi-tier security architectures can be imple-
mented in a public cloud. Using Amazon EC2, we focus on how the security
of such multi-tier architectures can be assessed. In the first part of this
chapter we will present our approach that discovers the actual configuration
of such architectures and then validates it against a desired configuration.
Furthermore we assess the vulnerability of such a configuration using attack
graphs and recommending potential improvements.

In the second part we compare two methods of deploying multi-tier virtual
infrastructures on Amazon EC2 and outline the offered isolation levels for both
methods. In the final part, we propose a method for detecting and evaluating
configuration changes in multi-tier virtual infrastructure deployments. This
method can be used to track the security levels of such architectures and
indicate degradations of the security.
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6.1 Configuration Security Audits

6.1.1 Introduction
Today, public clouds such as Amazon EC2 are used to host multi-tier infras-
tructures. Such infrastructures, e.g., comprise interconnected web, application,
and database servers that may then be synchronized with databases in the en-
terprise. While this approach provides scalability, it exposes private personal
or critical company data to attacks.

In order to mitigate this risk, security concepts similar to today’s well-
known security zones have been introduced. The so-called security groups
of Amazon allow users to group machines while restricting communication
through firewall-like rules. Nevertheless, the resulting configurations can
be complex and thus error prone. According to [Woo04], more than half of
37 analyzed corporate firewall configurations contained 9 out of 12 possible
mistakes or problems, therefore we can assume a similar number defects when
using firewall-like concepts in the cloud.

In this section, we propose a novel approach towards assessing the actual
security of such multi-tier set-ups and the corresponding security policies. We
focus on Amazon’s EC2 as one example of a public cloud. We first show how
the correct configuration of Amazon’s security groups can be visualized and
validated. We then proceed by assessing the resulting threats using attack-
graphs that show the risk of attacks for a given multi-tier set-up. Finally, we
show how a given multi-tier set-up can be automatically transformed such
that the functionality remains while the complexity and vulnerabilities are
reduced.

Scenario

Throughout this section we will use the same scenario to illustrate the different
audit and analysis methods. We consider an example configuration of a multi-
tier web application widely used in real-world deployments consisting of web,
application, and database servers. The web servers are reachable on the two
common web server ports 80 (http) and 443 (https) over TCP from any source.
The application servers are only reachable on an application specific port,
e.g., 8080 TCP, from the web servers. Furthermore, the database servers
are only reachable from the application servers on port 3306 (mysql) TCP.
For maintenance purposes, all servers allow ssh access (22 TCP) from the
corporate network, e.g., 1.2.3.4/24, and the servers accept ICMP packets from
any source.
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6.1.2 Reachability Audit
In this subsection we will discuss the audit of security group configurations
with regard to reachability, i.e., analyzing the information flow allowed by
the configuration. Visualization of the allowed information flow and a reacha-
bility query language are presented which can support the administrator in
developing new configurations and in discovering potential mistakes in the
current configuration. A policy language and automated analysis are shown
for the periodic verification of the configuration correctness.

The current configuration of the security groups and related information,
e.g., the security group membership of VMs, are obtained in the configuration
discovery phase described in Section 5.1.

Reachability Graph

The visualization and the later proposed automated analysis is based on a
directed multi-graph constructed from the configuration information obtained
through the Amazon API. The vertices of the graph represent the set of
sources and security groups defined in the configuration. The edges denote
the allowed information flow specified in the rules of a security group between
the sources and that particular group. For example, security group web allows
the Internet, i.e., 0.0.0.0/0, to access on port 80 TCP. The graph would
consist of two vertices for the security group and Internet source IP with an
directed edge between them labeled 80/tcp.

Visualization

Visualizing the reachability graph is useful for manual inspection of the
correctness of the current security group configuration. According to [Goo07],
visualization takes advantage of vision, the highest bandwidth input device,
and of the human perceptual abilities to make anomalies obvious to the user.

Listing 6.1 shows the output of the ec2-describe-group command, which
displays the current security group configuration and is part of the command-
line management suite of Amazon EC2. Even in such a simple example, it is
difficult to assess the correctness of the given configuration. Amazon allows
up to 100 defined security groups with multiple filter rules per group, which
would result in a highly complex configuration that is even more difficult to
evaluate.

In contrast Figure 6.1 illustrates the visualization of the reachability graph
of the same configuration. In our opinion, the visualization can be more
intuitively understood and judged for correctness. The multi-tier structure of
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GROUP 1234 app a p p l i c a t i o n s e r v e r
PERMISSION 1234 app ALLOWS tcp 8080 8080 FROM USER 1234←↩

GRPNAME web

GROUP 1234 db database s e r v e r
PERMISSION 1234 db ALLOWS tcp 3306 3306 FROM USER 1234←↩

GRPNAME app

GROUP 1234 web web s e r v e r
PERMISSION 1234 web ALLOWS tcp 80 80 FROM CIDR 0 . 0 . 0 . 0 / 0
PERMISSION 1234 web ALLOWS tcp 443 443 FROM CIDR 0 . 0 . 0 . 0 / 0

GROUP 1234 d e f a u l t d e f a u l t group
PERMISSION 1234 d e f a u l t ALLOWS tcp 22 22 FROM CIDR ←↩

1 . 2 . 3 . 4 / 2 4
PERMISSION 1234 d e f a u l t ALLOWS icmp −1 −1 FROM CIDR ←↩

0 . 0 . 0 . 0 / 0

Listing 6.1: ec2-describe-group Command Output

the security groups is immediately obvious to the auditor and the external
sources, i.e., IP ranges, are clearly pointed out.

Potential misconfigurations can easily be spotted in the visualization. For
example, if the database security group would allow any source to access the
database, rather than just the application group, it can easily be detected
during the inspection due to an edge between the vertices 0.0.0.0/0 and db.

Query & Policy Language

The visualization of the security group reachability is only useful for a man-
ual inspection of the correctness of an initial security groups configuration.
Afterwards, a periodic verification of the configuration against a policy spec-
ification is desired, in order to retain the correctness of the configuration,
because changes in the configuration over its lifetime might cause violations
with regard to its original intentions. Furthermore, queries can be used to
answer questions about the reachability of the current configuration, e.g., for
resolving reachability problems.

Query Language: Reachability queries are specified in the following form:
from s to d port p proto p′. s is either an IP address (specified as a
single address or IP range), a security group, or any for matching all sources.
d is either a security group or any. p can be one specific port or a port range
p1 − p2. Both are transformed to a tuple (p1, p2), where in the former case
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0.0.0.0/0

web

app

db

1.2.3.4/24

default

80/tcp 443/tcp

8080/tcp

3306/tcp

22/tcp
-1/icmp

Figure 6.1: Visualization of Security Groups Reachability

p1 = p2. Valid values for p′ are tcp, udp, icmp. p and p′ can be set to any in
case one is not interested in the specific port or protocol.

Policy Language: For the policy language we will consider two cases. A
never policy specifies a reachability which should never be established between
a source and destination. An only policy allows only a specific reachability,
i.e., the given information flow is allowed but any other flow is considered a
violation of the policy. never policies are specified similarly to queries: never
from s to d port p proto p′.

For an only policy we have to extend this syntax slightly to allow the spec-
ification of multiple port and protocol pairs per source and destination: only
from s to d port p1 proto p′1 and . . . and port pn proto p′n. Consider
as an example a web server group which should only be reachable to port
80/tcp and port 443/tcp: only from 0.0.0.0/0 to web port 80 proto
tcp and port 443 proto tcp.

Reachability Analysis & Policy Verification

The processing and verification of the reachability queries and policies is
realized using two algorithms which are explained in the following.

Reachability Analysis: The algorithm to process the reachability queries
is given in Algorithm 1. We consider a sample input query: from s to d

41



6.1. CONFIGURATION SECURITY AUDITS

port p1− p2 proto p′, where the values (s, d, (p1, p2), p′) are passed as input
parameters to the algorithm. The algorithm returns True if the reachability
specified in the query is established for a given reachability graph GR = (V,E).

Algorithm 1: Process a Reachability Query
Input: Reachability Graph GR, Query (s, d, (p1, p2), p′)
Output: True or False if query matches GR

E ′ ← ∅
foreach e ∈ E do

if (s = any or s ⊆ e.source) and (d = any or d = e.destination)
then

E ′ ← E ′ ∪ {e}
foreach e ∈ E ′ do

c← e.constraint
if (p′ = any or p′ = c.proto) and (p1 = any or (c.p1 ≤ p1 and
p2 ≤ c.p2)) then

return True
return False

In the first step, we construct a set of edges E ′ containing all edges between
the given source and destination vertices. Since a source can be specified as
an IP range, we have to check if the given source s is a subset of the source
of the edge, e.g., 10.0.0.0/24 ⊂ 0.0.0.0/0. In case the source of the edge and
s are security groups, ⊆ acts as an ordinary equality operator. Otherwise,
when either the source or destination is specified as any, we will include the
edge regardless of the source or destination respectively.

In the second step, we compare the constraints of the edges in E ′ (indicated
by e.constraint) with the constraints specified in the query. any for the ports
and protocol short circuits the check, i.e., the query is only interested in an
edge between s and d. In the other case, the protocols must be equal and the
port range in the query enclosed in the port range of the edge constraint.

Policy Verification: The process of the verification of reachability policies
leverages the previously described query processing algorithm. For never
policies in the form never from s to d port p1 − p2 proto p′, we simply
convert them to a query (s, d, (p1, p2), p′) which has to evaluate to False.
Otherwise the given policy is not satisfied.

In case of an only policy like only from s to d port p1,1 − p1,2 proto
p′1 and . . . and port pn,1−pn,2 proto p′n, we have to do a two step process
for the verification. First we convert the policy into n queries of the form
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(s, d, (pi,1, pi,2), p′i) which all have to evaluate to True. Otherwise the reacha-
bility specified in the policy is not satisfied. Furthermore, we have to verify
that other information flows are not possible in the reachability graph for the
particular source and destination, i.e., queries of the complement (s, d, p̄, p̄′)
have to evaluate to False. This exclusiveness of the reachability specified in
the only policy is checked with Algorithm 2.

Algorithm 2: Verify Exclusiveness of an only Policy
Input: Reachability Graph GR, Policy

(s, d, [((p1,1, p1,2), p′1), . . . , ((pn,1, pn,2), p′n)])
Output: True or False if the policy is satisfied
[Construction of E ′ equal to Algorithm 1]
foreach e ∈ E ′ do

B ← [True, True, . . .]
c← e.constraint
for i = 1 to n do

if (p′i 6= any and p′i 6= c.proto) or (pi,1 6= any and (c.p1 < pi,1
or pi,2 < c.p2)) then

Bi ← False

if True /∈ B then
return False

return True

The construction of the set of relevant edges E ′ is equal to the part in
Algorithm 1. For each edge in this set, we initialize an array B, with a size
equal to the number of port-protocol pairs specified in the policy, with True
values. For each such pair, we check the edge constraint if it allows further
information flow than already allowed by the pair. For example the policy
requires only port (p1, p2) but the edge constraint allows (p1 − 1, p2 + 1),
therefore allows further information flow with two more ports and thereby
violates the only policy.

If the policy specifies any for the port or protocol then we can skip the
constraint check. Otherwise, if the protocols of the policy and edge constraint
are different, or the port range of the edge constraint is larger than the one
specified in the policy, we mark a violation in the array B by setting the array
slot corresponding to the port-protocol pair to False. After checking all pairs
for a particular edge constraint, we test if B does not contain any True value.
If this is the case, then the policy is violated, because none port-protocol pair
matched the edge constraint. In case of a non-violation, at least one pair
would have matched and resulted in a True value in B.
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The periodic verification uses a policy specification consisting of a set of
policies, which all have to evaluate to True, in order that the verification is
successful and the configuration does not contain any violations.

6.1.3 Audit using Attack Graphs
While the technique presented in the previous subsection targeted single
edges, we now extend this approach to inspect the whole graph. Since pure
reachability is a rather weak security measure, we extend the edges with a
weight of how likely it is that they will be vulnerable to an attack. This results
in a kind of attack graph [TASB07, WLI07, WLI08]. The audit of security
configurations using these attack graphs is concerned about the impact of
security group rules with regard to services security, and is based on the
previously presented reachability analysis.

Attack Graph

An attack graph for security groups consists of vertices based on IP ranges
and AMIs (Amazon Machine Images), where the information flow between the
vertices is given by the rules of the security groups the VMs — provisioned
from the AMIs — are members of. Furthermore, the edges are labeled with a
severity rating for the service running in the AMI and allowed by a security
group rule.

For example, assume that VM 1 is a member of security group web and
provisioned from AMI 1. There exists a rule in web that allows 0.0.0.0/0
to access on port 443/tcp. Suppose the web server running in AMI 1 has
a known vulnerability, then there would be an edge between 0.0.0.0/0 and
AMI 1 in the attack graph with a label 443/tcp medium.

Graph Construction

The previously described attack graph can be automatically constructed in
three steps.

The first step is to establish the relationship between AMIs and security
groups. Using the Amazon API, we can obtain the currently running VMs,
including information on the AMIs used for provisioning them and the security
groups they are members of. Typically, the number of different AMIs per
security group should be rather small, because the role of the security group
is reflected by a specific AMI, e.g., multiple instances of a web server AMI
would be member of the web security group. In our example we assume the
existence of four different AMIs; AMI 1 is a member of security group web,
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AMI 2 of app, AMI 3 and AMI 4 of db. Furthermore, all AMIs are member
of default. Figure 6.2 illustrates the relationships between security groups
and AMIs for our scenario.

0.0.0.0/0

web AMI 1

app AMI 2

db AMI 3

AMI 4

default

1.2.3.4/24

80/tcp 443/tcp

8080/tcp

3306/tcp

22/tcp
-1/icmp

Figure 6.2: Relationship between Security Groups and AMIs

The second step in the construction is to obtain a severity rating for
the services running in the AMIs. Using Amazon EC2 we can start each
AMI in a separate VM for analysis purposes, thereby not affecting the
production systems. The AMI’s security from an external point of view can
be determined in the VM using vulnerability scanners like Nessus [Ten10].
Further information such as patch levels and version numbers can be obtained
from an internal point of view by logging into the AMI instance. For each port
of an AMI we thus obtain a severity rating from a domain of vulnerability
ratings. Here we use the range of Low, Medium, or High. For typical
applications this level of granularity seems to be sufficient, but a more
fine-grained rating can be achieved using Common Vulnerability Scoring
System (CVSS) [MSR07].

The final step in the construction is to combine the previously obtained
information with the reachability graph of security groups. A security group
is replaced by all the AMIs related to that particular group, and the edges
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AMI 10.0.0.0/0 0.0.0.0/0
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Figure 6.3: Attack Graph of the Multi-Tier Application

between the sources and the AMIs are additionally labeled with the severity
rating for the port and protocol associated with each edge. Figure 6.3
illustrates the attack graph for the example scenario where thicker edges
represent higher vulnerability ratings.

In the current configuration, an attacker in the corporate network could
compromise a VM of the application server group, which are provisioned
using AMI 2, through a vulnerability in the ssh service. Afterwards, further
attacks can be launched against the medium rated mysql service running on
instances of AMI 4, potentially compromising the database.

Query & Policy Language

When analyzing attack graphs constructed from cloud configurations, one is
particularly interested in the weakest path from one vertex to another. The
weakest path is the shortest path with the highest vulnerability rating, i.e.,
the most likely path an attacker would take to compromise a specific resource,
because less vulnerabilities with high severity ratings are more likely to be
exploited successfully.

Query Language: Reachability queries are specified in the following form:
from s to d vuln v. We drop protocols and ports in the query, since we
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are mostly interested in the vulnerability, not how an attack is performed. s
is either an IP address (specified as a single address or IP range), an AMI, or
any for matching all sources, and d is either an AMI or any. The vulnerability
value v can be any value from the domain of vulnerability ratings, or the
special value any. The result of such a query is a set of shortest paths P from
s to d. If any is specified for v, then all paths are considered, otherwise only
paths with a minimum vulnerability higher than or equal to v are considered.

Policy Language: For the policy language we consider the same cases as in
Subsection 6.1.2. As before, a never policy specifies an unwanted connection
between a source and a destination. They are specified similarly to queries:
never from s to d vuln v, where s, d, and v can have the same values as
for queries. The interpretation of a never policy is that there may never be a
connection with a vulnerability rating higher than or equal to v.

Unlike before, only policies are very similar to never policies when dealing
with attack graphs. This is because we only want to restrict the vulnerability
ratings allowed on connections between nodes. These policies have the form
only from s to d vuln v, that is the only difference is the initial keyword.
Again, s, d, and v can have the same values as for queries. The interpretation
of an only policy is that there may only be connections with vulnerability
ratings lower than or equal to v.

Weakest Path Algorithm & Policy Verification

The analysis of queries on the attack graph, and the testing of attack graphs
against policies, is performed by means of Dijkstra’s shortest path algorithm
on a weighted graph. The weight of the edges is based on the vulnerability
rating where the weight relation is the following: High < Medium < Low.
Since Dijkstra’s algorithm will determine the shortest path with the lowest
weight, we will obtain the most likely path an attacker would take. In
case the query or policy contains a vulnerability parameter unequal to any,
annotated by any, we have to transform the attack graph before performing
the Dijkstra’s algorithm by removing all edges with a vulnerability rating
lower than the one specified.

Based on the four different combinations of query/policy source and des-
tination parameters, i.e., (any, any), (any, any), (any, any), and (any, any),
we have to perform a different variation of the Dijkstra’s algorithm. For the
case (any, any), i.e., a specific source and destination, the Dijkstra’s algorithm
can be terminated upon finding the shortest path for the destination. In
the other case where the destination is any, the regular algorithm will be
performed which determines the shortest path between a single source and all
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other vertices. For (any, any), i.e., the source is any, we reverse the attack
graph and start the single source Dijkstra’s algorithm from the destination.
Due to the reversal of the attack graph, we also have to reverse the paths
obtained by the Dijkstra’s algorithm. In case of (any, any), all-pairs shortest
paths is determined using Dijkstra’s algorithm starting from every vertex.
Alternatively, the Floyd-Warshall algorithm could be used to determine the
all-pairs shortest paths.

The policy processing can be based on the approach of finding the weakest
path. A never policy basically states the fact that no weakest path with the
properties specified in the policy should exist. In case of only policies, they
state that never should exist a path with a vulnerability higher than the one
specified. For example, the policy specifies a medium vulnerability, then no
path with a high vulnerability should exist.

6.1.4 Security Groups Transformation
The purpose of the transformation process is to reduce the complexity of the
configuration by removing unnecessary rules and extracting common ones,
and to improve the security by splitting existing security groups.

Splitting of Groups: Based on the attack graph and a specification of the
desired services dependency, we can propose a new security group configuration
by splitting existing security groups. The splitting process has to balance
between increasing configuration complexity and security. One extreme case
would be to place each AMI in a separate security group, therefore minimizing
the affect of a vulnerability in one AMI to other AMIs. Generally, high or
medium rated AMIs are isolated in separate groups, while AMIs with a low
or no severity rating can remain in the same group.

Closing Unnecessary Open Ports: Using the AMI analysis of open ports
and the rules of the corresponding security group the instances of that AMI
are a member of, we can identify unnecessary rules in the configuration if ports
are opened in the configuration, but no service is listening on that particular
port in the AMI instances. The difference of the set of ports opened by the
security group and the set of ports used by the AMIs represents the ports
which are unnecessarily opened. These ports can be automatically removed
from the security group rules set during a transformation phase.

Extracting Common Ports: A VM can be a member of several security
groups and we can leverage this fact to reduce the complexity of the con-
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figuration by identifying common ports in the rules of the existing groups
and extract them into a separate group. For example, if all groups would
allow ssh access from a corporate network and allow ICMP packets, we could
automatically extract these rules into a separate group. All instances would be
additionally a member of that group. The principle is similar to Refactoring
found in software engineering, where common functionality is extracted.

6.1.5 Implementation
We implemented the previously described construction of reachability and
attack graphs, as well as the processing of queries and policies for such
graphs in Python. The implementation, called SAVEly, was straight forward
given the detailed algorithms presented earlier and it is given in Listing D.1
in Appendix D. We are using the boto [bot10] library for obtaining the
configuration from Amazon EC2, and the NetworkX [Net10] library for the
graph handling and shortest-path algorithms.

The attack graph construction is using the OpenVAS vulnerability scan-
ner [Ope10]. For each discovered AMI we spawn a new instance in a specialized
savely_scan security group which allows all traffic from the scanner machine’s
IP address, instead of scanning the production servers directly. This approach
of scanning will not affect the production servers due to aggressive scanning
probes.

Practical results for the tool will be given in Chapter 7.

6.1.6 Improvements for Security Groups
In this section we propose a set of potential improvements for security groups,
in order to increase the security of deployments based on such a concept.

Outbound Filtering: An obvious limitation of the current security group
concept is the missing functionality of filtering outbound traffic. A VM can
contact any host on the Internet which could result in a leakage of sensitive
information in case a VM is infected with malware. The current concept is
simple and probably good enough for most current customers, but in case of a
wider adoption and enterprise-grade deployments, the demand for outbound
filtering will raise.

Logging: The management layer does not provide any insights in the kind
of traffic which was blocked by the inbound filtering. This information can
be useful for setting up intrusion detection systems and initiate prevention of
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attacks in case of traffic anomalies from a certain source. Providing security
logging information in an accessible format could create an ecosystem of third-
party security appliances, which monitor such logs and act upon malicious
events.

AMI Membership Policies: An AMI can have services installed which
do not have proper authentication and authorization mechanism and are
intended to run in an isolated environment. An example for such a service
is memcached, a popular network-accessible caching service used by a large
number of websites, which should only be reachable by the web or application
servers of a deployment. However, currently an AMI can not be accompanied
by a policy specifying the security group properties required for a secure
operation of that AMI. In case of the memcached example, the AMI would
specify that only other security groups, or more specifically the web or app
groups, can access the memcached service.

A similar concept was proposed in [MGHW09] in the form of network
contracts, which are part of the concept of Virtual Machine Contracts.

6.2 Comparison of Deployment Methods
In this section we will compare two different deployment methods for multi-tier
virtual infrastructures. We consider a scenario, where an existing enterprise
IT is extended into a public infrastructure cloud and that the cloud will
host a multi-tier application. We investigate the following two methods: a
setup using security groups as used in Section 6.1 and one using Amazon
Virtual Private Cloud (VPC). In particular we are interested in the security
properties of the two deployment methods and what kind of isolation levels
they can provide.

6.2.1 Security Groups
Instead of allowing the Internet (0.0.0.0/0) to access the first tier of the multi-
tier application used in Section 6.1, we restrict this access to the enterprise
network. If all other tiers only allow access from another tier, then the
multi-tier application is separated from the Internet and only accessible from
the enterprise. The connection between the first tier and the enterprise might
need to be further secured using a VPN tunnel, in case sensitive information
are transferred between the enterprise and the multi-tier virtual infrastructure.
The same applies to inter-tier communication, in case the tiers are located in
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different Amazon regions or availability zones and traverse the Internet, or in
case that the Amazon network is not trusted.

6.2.2 Virtual Private Cloud
Amazon Virtual Private Cloud (VPC) was already briefly introduced in
Section 2.3.2. A VPN endpoint is provided by Amazon in order to secure
the network communication between the enterprise and the cloud resources
using a VPN tunnel. The IP addresses of VMs running within a VPC are
user-specified, therefore allows a seamless integration of cloud resources into
the enterprise network. The subnet assigned to a VPC can further divided
into multiple subnets to host the VMs, which are arranged in a star topology
with a router in the middle. Each tier can be placed in a different subnet as
part of a VPC. At the time of this writing, only one VPC per customer is
allowed.

6.2.3 Isolation Levels
A VPC can be divided into multiple subnets each hosting a different tier of
a multi-tier deployment, but the communication between the tiers can not
be restricted in any way, because customers do not have access to the router
placed in the middle of the subnets star topology. Applying network filtering
to only allow certain tiers to communicate with each other is not possible in
the current form of the VPC offering. Furthermore, security groups are also
not available in combination with VPC, which would be useful with another
VPC subnet as a possible source in a security group rule. The only way left
is to do filtering based on VPC subnets within the VMs, which inhibits the
flexibility of the cloud and could be deactivated by an administrator of the
VM or malware.

In case of a security group based setup, the inter-tier communication can
easily be configured in a flexible way, and the filtering is performed outside of
the VM, therefore it can not be tampered by a VM administrator or malware.

A VPC shares the same underlying physical infrastructure as the rest
of the Amazon cloud and is not completely isolated from other customers.
Therefore, intra-VPC traffic also needs to be further secured in case one does
not trust the network in Amazon data centers.

Since a VPC is isolated in terms of networking, a misconfiguration which
would expose an instance of a VPC to the Internet is less likely compared
to a security group setup. All external traffic of a VPC passes through the
enterprise network and can be filtered and analyzed using existing security
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infrastructure in the enterprise. For the security group setup, misconfigura-
tions are more likely but can be mitigated using the security audit process
described in Section 6.1.

6.2.4 Conclusions
The advantages of a VPC are clearly the seamless integration into an en-
terprise network by using user-specified IP ranges and an Amazon provided
VPN endpoint. The network isolation of a VPC leaves less possibility of
misconfigurations, which would expose a VM of a VPC to the Internet. In
case of security groups, a misconfigured rule could potentially expose a VM
to the Internet, but a security audit process could reduce the possibility of
such a problem.

A huge disadvantage of a VPC based deployment of a multi-tier infras-
tructure is the missing functionality of restricting inter-tier communication on
Amazon level. All tiers, i.e., VPC subnets, can freely communicate with each
other, if not otherwise restricted by the individual VMs, because customer
access to the VPC router or security groups in a VPC are not available at the
time of this writing. In contrast, a security group based deployment allows
an easy configuration of inter-tier communication restrictions. An alternative
by placing each tier in a separate VPC and filter inter-VPC traffic on the
customer VPC endpoint is also not possible, because the number of VPCs
per customer is limited to one.

In case one tier requires access to external resources or provides a service
to hosts not part of the multi-tier application or enterprise network, such
traffic would increase the overall traffic costs in a VPC based deployment. We
have to take into account the traffic costs between Amazon and the enterprise,
and between the enterprise and the external host. In a security group based
deployment, such traffic costs are limited to the traffic between Amazon and
the external host.

We can conclude that a security group based deployment for multi-tier
infrastructures is preferred, due to the limited functionality of VPC regarding
inter-tier communication restriction and costs. However, the current VPC
offering is still in testing phase, so it might improve until a final stage is
reached and might be superior to security groups. Furthermore, for a security
group setup, an automated audit process is recommended to mitigate the
problems of misconfigurations and accidental exposure of VMs.
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6.3 Analysis of Configuration Changes
The configuration of virtual infrastructures deployed on public clouds can be
very agile: new machines are added or modified, firewall settings are changed,
and the overall complexity increases. We are interested in automatically
monitoring these changes with regard to different properties. For example,
one could track the overall security of the virtual infrastructure, i.e., the risk
of potential security breaches, by monitoring the vulnerability ratings of the
deployed services.

In this section we will propose a method for the discovery and evaluation
of configuration changes in a multi-tier application deployment. The changes
can be evaluated with regard to various properties and we will focus on
vulnerability ratings. Another potential property is expected availability, with
regard to the replication of services, which we will briefly outline.

6.3.1 Discovery of Changes
The first step in the process of analyzing configuration changes is the discovery
of changes by comparing two sets of configurations. Consider we have a
configuration from time t1, C1, and a configuration from time t2, C2. We now
want to detected the changes between these two configurations.

Changes Reflected in Attack Graphs

In this section we will present the potential changes in the configuration
which will have an impact on the security of the system. We will argue that
these changes are reflected in the corresponding attack graphs and that attack
graphs are a suitable representation of a configuration for a given point in
time. Two graphs can be compared in order to detect the security-related
changes. In case of an analysis with regard to vulnerability ratings, we will see
that attack graphs have all the desired properties for detecting and evaluating
changes. Consider the following list of possible changes to a configuration:

• Security Group
– Adding a new Group
– Removing a Group

• AMI
– Adding a new AMI to a Security Group (SG)
– Removing an AMI from a SG
– Migrate an AMI from one SG to another
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– Changes within the AMI, e.g., new services
• Ports (SG rules)

– Open a new port for a SG
– Close a port for a SG
– Change the source of a rule

We will now analyze the changes in order to determine their impact on the
overall security, i.e., the risk of security breaches depending on the vulnerability
ratings.

Security Group: The impact of adding or removing a security group
depends on the rating of the AMIs grouped in that SG and the allowed
communication for that SG. For example, a new SG containing multiple AMIs
with several high severity rated services, which are all exposed to the Internet
by the SG, will have a significant negative impact on the overall security
of the virtual infrastructure. Removing such a SG will have of course an
equivalent positive impact.

AMI: In case of configuration changes involving AMIs we can determine
the following impacts. The impact of adding a new AMI depends on the
severity rating of the services located in that particular AMI and the allowed
communication by the SG the AMI is a member of. If the SG denies all
communication to the services of the new AMI, there will be no security
impact, because the AMI will be isolated. We have to assume that the
AMI itself is not malicious and does not try to extract internal information
by sending them outwards, because outbound filtering is not available for
Amazon Security Groups. If a vulnerable services is allowed by the SG,
the negative impact depends on the rating and the allowed source of the
communication. For example, a medium rated services only accessible by the
corporate internal network could have a lower impact than a low rated service
accessible by anyone.

Removing an AMI will have an equivalent positive impact on the security
of the overall virtual infrastructure. Migration of an AMI can be considered
as removal and adding. Changes in an AMI are mainly concerned regarding
the security of the offered services, i.e., degradation or improvement of the
vulnerability ratings of the services.

Port: Finally we are considering changes in the SG rules, i.e., opening,
changing, or closing ports. The impact of opening a new port depends
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again on the services offered by AMIs located in that particular SG. If no
services on the newly opened port are offered then there will be no security
impact. Otherwise the negative impact will depend on the severity rating of
the opened service. Removing a port will have again an equivalent positive
impact on the security. Changing the source of a rule can result in a negative
or positive impact. If the old source is a subset of the new one, e.g., 1.2.3.4/24
⊂ 0.0.0.0/0, the result is a negative impact on the overall security, because
the group of potential attackers was increased. In the other case, a reduction
of the group of potential attackers will have a positive impact.

Conclusion: A negative or positive impact of the previously described
changes depends in most cases on the severity rating of services, which are
reflected in the attack graphs. For example, in case a new AMI is added with
a service exposed by its security group, a new edge and vertex will appear
in the corresponding attack graph. Therefore attack graphs are suitable for
detecting changes related to vulnerability ratings.

Detecting Changes using Attack Graphs

As previously demonstrated, attack graphs can be used to represent the
configuration of the virtual infrastructure when analyzing changes with regard
to vulnerabilities. In case a change will have an impact on the overall security
of the deployed application, the change will be reflected as a new vertex or
edge in the attack graph. Since all vertices are uniquely labeled and edges are
uniquely identifiable, we can easily detect differences between two given attack
graphs by performing a set difference operation on the sets of vertices and
edges, instead of using a costly graph isomorphism and difference technique.

Consider the attack graphs for the two configurations C1 and C2: GC1 =
(VC1 , EC1) and GC2 = (VC2 , EC2). The set of new edges appearing in the
second configuration, e.g., due to opened ports, can be determined by Enew =
EC2 \ EC1 and analogously the set of deleted edges by Edel = EC1 \ EC2 .
New or deleted vertices can be determined similarly: Vnew = VC2 \ VC1 and
Vdel = VC1 \ VC2 , but we are mainly interested in the edges as they represent
possible attack paths.

6.3.2 Evaluation of Changes
We are now presenting the method for evaluating the set of changed vertices
and edges in the attack graphs, and determining the security impact of
these changes. Unlike previous work in the field of ranking attack graphs
[MBZ+06], we are not evaluating the individual attack graphs for two separate

55



6.3. ANALYSIS OF CONFIGURATION CHANGES

configurations and compare the quantified results, but rather evaluating the
differences between two attack graphs and propose a quantified result based
on these relative changes.

We are using the scenario presented in Section 6.1 as an example to
demonstrate the evaluation. The attack graph shown in Figure 6.3 acts
as the representation of configuration C1. We are now considering changes
in AMI 1 and security group web resulting that a medium-rated service
on port 8080 is accessible from anywhere. The difference is illustrated
in Figure 6.4 which lead to the following set of changed edges: Enew =
{(0.0.0.0/0, AMI1, 8080, tcp,medium)} and Edel = ∅.

0.0.0.0/0 AMI 1

8080/tcp
medium

Figure 6.4: Configuration Change between Attack Graphs

In general we will have a set of edges added or removed between two
configurations in the generic form illustrated in Figure 6.5. s can either be
an IP range or another AMI, a is always an AMI in our attack graphs, and
the edge is annotated with port p, protocol p′, and vulnerability rating v.

s a

p/p’
v

Figure 6.5: Generic Configuration Change

We will evaluate the impact of the individual components of such a change
and then combine them to determine the impact of the overall change between
two configurations. The evaluation is performed on an abstract conceptual
level, because the choice of concrete probabilities and numbers will vary
significantly between different scenarios.

Evaluate Source

In order to evaluate the impact of the source of a change, we have to classify
the source into three possible cases with different attack probabilities:

• arbitrary IP range

• known IP range (e.g. a corporate network)
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• another AMI

For the three different classes we assume three evaluation functions f(ip), g(ip),
and h(ami), which return a negative impact for the given input parameter. An
intuitive relation between the output results of these functions is f > g > h,
that is, the highest negative impact is given for an arbitrary IP range, because
in this case we have no information on restrictions of such an attacker and
have to assume the worst-case scenario, i.e., the most powerful attacker. For
the other two case, an attacker must either be an insider (e.g. in the corporate
network) and/or has to have compromised a specific AMI in the deployed
multi-tier application.

The negative impact result of these functions can vary depending on
the input parameter. In case of f(ip), the negative impact depends on the
“wideness” of the given IP range. For example, 1.2.3.4/24 would result in a
lower negative impact compared to 0.0.0.0/0, because the set of potential
attackers is smaller in the first case. Of course, this is a probabilistic approach,
because a very determined attacker could reside in a small specified IP range
compared to a number of regular users in a large IP range.

In order to determine the negative impact of g(ip), we require a specifi-
cation of known IP ranges with a rating of their attack probabilities. For
example, the corporate network should have a lower probability assigned than
a third-party vendor network. However, overall the negative impact should be
smaller compared to f , because the attack probabilities are semi-deterministic
and we do not have to assume the most powerful attacker.

Finally we consider the function h(ami) which returns a negative impact
for a given AMI. Since the AMI is part of the deployed multi-tier application,
an attacker has to be either an insider or one who has compromised the
specific AMI. We can either specify an attack probability for the insider
attacker case or base the attack probability on the fact how likely the AMI
will be compromised. In the latter case, the number of incoming edges and
their vulnerability rating can be an indicator for the probability that the AMI
might get compromised.

Evaluate Service Vulnerability

Determining the negative impact on the security of the system for the service
vulnerability is straight forward. A high vulnerability rating will have a
greater negative impact compared to a low rating. In the current form we
use a coarse-grained rating system consisting of high, medium, and low, but
a fine-grained and numerical rating system could be adopted. For example,
the Common Vulnerability Scoring System (CVSS) [MSR07] could be used.
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Evaluate AMI

The negative impact on the security for an AMI depends on the criticality
of the AMI. The criticality can either determine the impact in terms of loss,
e.g., of financial nature or loss of reputation, in case the AMI is getting
compromised, or the usefulness of the AMI for an attack to compromise other
AMIs reachable from that AMI. For the first case, a risk assessment has to
be done to determine the criticality of the deployed AMIs, which will be used
for the evaluation process. The usefulness can be determined by the number
of outgoing edges and their vulnerability ratings.

Overall Evaluation

In order to perform an overall evaluation of the changes between two configu-
rations, we first combine the evaluation of the components of the changed
edges and then combine the results for all edges. The combination of the
edge component evaluation is given:

i(e) = αi′(e.source) + βi′(e.vuln) + γi′(e.ami)

i′ is an evaluation function for individual components of edge e, based on
the concepts presented before, returning a negative value, i.e., a negative
security impact. i combines the results using weight factors α, β, and γ, for
the impacts of the components.

We combine the evaluation of the new and removed edges using:

I =
∑

e ∈ Enew
i(e) −

∑
e ∈ Edel

i(e)

This will return either a positive or negative impact for the changes performed
between two given configurations.

6.3.3 Application
We are now presenting a possible application for the configuration change
evaluation method presented before. The application monitors relative changes
in the security of a deployed application, i.e., the risk that security breaches
occur, and plots the security level in respect to a time line. This can also be
used to compare a new configuration with a desired or base configuration.

The construction of attack graphs can be performed periodically for a
deployed multi-tier application and the newly obtained attack graph will be
compared with the one from the previous periodic run. The impact on the
security of the application can be calculated for the two attack graphs or
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configurations, assuming we have suitable parameters for the actual attack
probabilities, and the relative change can be plotted in a graph.

t

rel. security

base
tytx

to

Figure 6.6: Security Level Monitoring

Figure 6.6 illustrates such a graph with sample values. At time to we obtain
the attack graph for the initial configuration called the base configuration.
Desirably, the security of the deployed application will only improve in the
future in relation to this base configuration. As we can see in the plot,
the configuration evolves positively in comparison to the base configuration,
although it also degrades locally, until time tx where configuration changes
lead to a degraded security state compared to the base configuration. An
administrator should be alarmed at this point to restore a proper configuration
to obtain a security level at least as good as the one of the base configuration,
which happens after time ty.

6.3.4 Beyond a Vulnerability Perspective
After evaluating configuration changes with regard to vulnerability ratings of
services, we will now give an outlook for the evaluation regarding replication
and availability.

Comparing configuration changes by the means of attack graphs is no
longer suitable for an evaluation perspective regarding replication. Important
aspects of the configuration are now:

• Dependencies of AMIs

• Number of instances of an AMI

• Replication of services

• Diversity (OS, physical location)
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These aspects of the configuration could be captured in a directed graph,
where the vertices are AMIs again and the edges denote that a service is
replicated by another AMI or that a dependency between the two AMIs exist.
Each vertex could have a rating assigned based on the number of instances for
that particular AMI and attributes about the operating system and physical
location.

A high amount of dependency edges has a negative impact on the overall
availability of the deployed virtual infrastructure, because the likelihood of
cascading failures increases. Furthermore, a low number of instances for a
particular AMI has also a negative impact due to possible failures of instances
breaking replication or dependency associations. On the other hand, a high
diversity in the infrastructure, e.g., different operating systems in different
physical locations, has a positive impact on the availability level of the
infrastructure. Replication among the services will also have a significant
positive impact.

Similarly to the evaluation of changed edges between two attack graphs,
we can apply the same approach to the analysis of changed edged between
two graphs of the previously described form. Additionally, the analysis of
vertices properties is required to evaluate AMI diversity and the number of
instances.
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Chapter 7

Evaluation & Practical Results

In this chapter we will evaluate the prototype implementation for analyzing
multi-tier application deployments on Amazon with regard to performance
and functionality. We will present practical results for analyzing an example
application deployed on Amazon.

7.1 Performance Evaluation
In this section we will present the complexity of the analysis algorithms in
general, and discuss hypothetical and practically realistic complexities of the
reachability and attack graphs. Furthermore, we will show time measurements
of using the SAVEly tool in practice.

7.1.1 Algorithm Complexity Analysis
Determining the complexities of the algorithms presented in Section 6.1 with
regard to the input graph parameters is straight-forward. For the reachability
graph algorithms Algorithm 1 and Algorithm 2, it is obvious that they iterate
over the set of edges of the input graph. For the query algorithm we obtain a
complexity of O(|E|), and for the policy algorithm O(|E| · n) where n is the
number of ports specified in the policy, because each edge has to be tested
for all specified ports. However, typically n � |E| which leads to O(|E|)
complexity for both algorithms.

The attack graph analysis algorithms are based on variations of Dijk-
stra’s algorithm for single-source and all-pairs shortest paths. According to
[CSRL01], we obtain a complexity for single-source algorithm using an array
as underlying data structure of O(|V |2 + |E|), which is in many cases domi-
nated by |V |2 therefore O(|V |2). For sparse graphs, we can use a Fibonacci
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heap as the data structure and obtain a complexity of O(|E| + |V |log|V |).
Using Dijkstra’s algorithm for all-pairs shortest path, we have to perform
the single-source Dijkstra’s algorithm for each vertex in the graph, yielding
a complexity of O(|V |3 + |V ||E|) for the array-based variant, which is in
many cases dominated by the |V |3 therefore O(|V |3). For a sparse graph with
Dijkstra’s algorithm based on a Fibonacci heap starting from all vertices, we
obtain O(|V |2log|V |+ |V ||E|).

7.1.2 Reachability Graph Upper Bound Complexity
In order to evaluate the scalability of the reachability analysis algorithms, we
try to define an upper bound for the complexity a reachability graph. We
consider a complete multi-graph of Security Groups, meaning each SG is
connected to each other SG, itself, and to all IP sources using all possible
port/protocol and ICMP combinations. Figure 7.1 illustrates such a complete
reachability graph, where the dotted edges represent a set of edges for all
possible port/protocol combinations.

SG1

IPnIP1 SG2 SGm

p1/p
′
1

pi/p
′
j

Figure 7.1: Security Groups Complete Graph

In order to calculate the number of edges and vertices in such a graph, a
number of parameters and assumptions are required. The following parameters
are given:

• Number of Security Groups: 100

• Port Protocol Combinations: 2 · 65536

• ICMP Combinations: 256 · 14

The maximum number of Security Groups is specified by Amazon in [Ama09a].
However, empirical testing showed that this limit is not enforced, but we will
assume it as an upper bound which might be enforced in the future. The
number of port protocol combinations is given by 2 possible protocols, i.e.,
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TCP and UDP, where each protocol allows up to 65536 possible ports. The
number of possible ICMP combinations is given by the ICMP type field which
allows up to 256 different values (we also consider reserved values), and to
each type a number of possible codes are associated where the maximum
number occurs for the ICMP type 3 with 14 possible values. We assume here
that the number of rules per SG is not limited, therefore allow all possible
combinations of port/protocol rules within a SG, otherwise the number of
edges would be less than the upper bound we are defining.

The number of edges between a source (IP source or another SG) and a
SG is |E ′| = 2 · 65536 + (256 · 14) resulting from all possible port/protocol
combinations. Since all IP sources and SGs are connected with all SGs
using directed edges and allow loops, we obtain a total number of edges
|E| = |SG| · (|SG| + |IP |) · |E ′|. For the number of vertices we obtain
|V | = |SG|+ |IP |.

In case we are assume that all possible IPv4 addresses, i.e., 232, are
used as IP sources, the number of vertices and edges increases dramatically.
The number of edges is in the order of 5.8e18 and the number of edges
approximately 232. On a 1GHz computer, i.e., 1ns = 10−9s per operation, the
reachability algorithms would take approximately 185 years, which is clearly
not feasible (at least on a single computer).

We will now consider more realistic scenarios to demonstrate the run-time
of the algorithms, although they do not represent the hypothetical worst-case
scenario demonstrated above. If we consider |IP | = 1e3, the run-time is
approximately 15s which can be easily done. Even if we consider |IP | = 1e6,
the duration increases to approximately 3.74hrs which still is realistic to
achieve.

In conclusion we can say that the hypothetical worst-case scenario is not
feasible to perform on a single computer, mainly due to the number of possible
IP addresses. However, we showed that even for realistic complex scenarios
the algorithms perform in reasonable time, which follows that even very large
real-world deployment can be analyzed with the proposed algorithms in short
time.

7.1.3 Attack Graph Upper Bound Complexity
Defining an upper bound complexity for the attack graphs in the analysis is
similar to the previous reachability graph complexity approach. Figure 7.2
illustrates a complete attack graph.

Instead of considering security groups for the vertices, we are now con-
sidering AMIs. The number of allowed AMIs per SG is important for the
complexity calculation, but no official limit exists. We will assume that a
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AMI1,1

IPnIP1 AMI1,2 AMIi,j

p1/p
′
1/v

pi/p
′
j/v

Figure 7.2: Complete Attack Graph

maximum of 100 AMIs per SG is allowed, similar to the limit of the overall
number of SGs. Therefore, |AMI| = |SG| · 100. The number of edges can
then be determined by |E| = |AMI| · (|AMI|+ |IP |) · |E ′|, which is equivalent
to the number of edges in the complete reachability graph. The number of
vertices is |V | = |AMI|+ |IP |.

Since we are dealing with a complete multi-graph, the following holds:
|V | � |E|, therefore the complexity of the Dijkstra’s algorithm is dominated
by |E|. Furthermore, the number of vertices and edges is even higher than in
the reachability graph example, therefore the hypothetical worst-case scenario
assuming 232 IP sources is again not feasible.

We are considering 100 AMIs per SG, therefore we can calculate the
factor with which the number of edges increases in the complete attack
graph compared to the reachability graph: d(|IP |) = 104+|IP |

1+|IP |·10−2 and therefore
|E|AG = d(|IP |) · |E|RG.

For the scenario |IP | = 1e3, we are now getting a factor of 1000, therefore
the run-time is 15000s, i.e., approximately 4.1hr, which is a significant
decrease in terms of practicality of the algorithms. In order to find a practical
but still highly complex scenario, which would act as a upper bound for real-
world applications, we have to consider the edges between sources and AMIs.
Currently |E ′| represents all possible combinations of port and protocol, but
this means that each AMI has a number of vulnerable services in the order of
130 · 103, which is very unlikely. We now consider |E ′| = 1e3 and |IP | = 1e3,
and we obtain a running time in the order of 1.8min, which is very reasonable.
For |E ′| = 1e4 the run-time is still a practically reasonable 18.3min.

Due to the increased number of vertices and especially their interconnects,
the complexity of the complete attack graph is much higher than compared
to a reachability graph, resulting in longer run-times of the algorithms. The
hypothetical worst-case scenario is again not feasible, but considering highly
complex practical scenarios, which act as a lower upper bound than the
hypothetical one, shows reasonable run-times.
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7.1.4 Time Measurements
Besides discussing the algorithmic complexity and upper bounds of the graph
complexity, we will give time measurements for the analysis on example
deployments on Amazon using the SAVEly tool. The accuracy of the time
measurements is not very important, because we mainly want to convey a
general overview of the time consumptions rather than using the measurements
for performance improvements and profiling. The measurements were obtained
on a regular laptop machine with a 2.13GHz Pentium M processor, 2 GB of
RAM, and running Gentoo Linux.

Reachability Graph Analysis

The deployed configuration results in a reachability graph with 257 vertices
(resulting from the security groups) and 505 edges (based on the security
groups rules). We obtained the following measurements for the individual
parts of the analysis:

• Obtain SGs from Amazon: 1.7s

• Build reachability graph: 0.04s

• Perform reachability queries (7): 0.025s

• Perform policy check (2 never, 1 only): 0.01s

Clearly obtaining the configuration from Amazon is the slowest part in the
process, because a cryptographically signed transaction over the Internet to
Amazon’s API server has to be performed.

Attack Graph Analysis

For the construction of the attack graph we use the OpenVAS [Ope10] vulner-
ability scanner with 585 plugins enabled. Furthermore, we have to obtain the
security groups and running instances from Amazon. We obtain the following
measurements with one running instance found and scanned:

• Get Security Groups: 1.6s

• Get Instances: 0.15s

• Build Attack Graph: 2min52s
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The construction of the attack graph is by far the most time consuming part
in the analysis process, because it involves starting a new instance at Amazon
EC2 and performing a vulnerability scan, where the vulnerability scan is the
dominating factor.

Since the constructed attack graph is rather simple, because it only involves
one AMI, we are performing the analysis on an attack graph similar to the
one presented in Section 6.1 in Figure 6.3. However, the ICMP edges were
removed. We obtain the following time measurements for performing queries
and policy checks on the attack graph:

• Queries (5): 0.01s

• Policies (1 never, 1 only): 0.0015s

Evidently for such simple attack graphs the query and policy checks can be
performed in an instant.

The most time consuming part in the attack graph analysis is the vulner-
ability scan. A possible improvement for this step could be to parallelize it,
i.e., start all instances at the same time and perform the vulnerability scan
from an equal number of scanning instances. However the scanning instances
can not be run on Amazon EC2, because their policy prohibits the port scan
of other instances.

7.2 Reachability Analysis Results
We will now present practical results from the reachability analysis. We
consider a security group configuration for a multi-tier web application, which
we already presented in Chapter 6.

7.2.1 Graph Construction
Figure 7.3 illustrates the automatically constructed reachability graph using
the security group configuration obtained from Amazon. The visualization is
done by the tool using the DOT language and graphviz [gra10].

Figure 7.4 extends the reachability graph with membership information
of AMIs, i.e., which security group contains instances of specific AMIs. For
demonstration purposes we only consider one web server image located in the
default and web security groups.
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Figure 7.3: SAVEly Reachability Graph
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Figure 7.4: SAVEly Security Group AMI Relationship Graph
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7.2.2 Analysis
We want to analyze the reachability graph of the discovered multi-tier appli-
cation configuration. In the first part we get insights into the reachability by
performing queries and to verify that the desired reachability is fulfilled by the
current configuration. In the second part we specify undesired behavior. The
file containing the reachability queries is given in Listing 7.1. It is naturally
derived from the specification of the multi-tier application.

from 0 . 0 . 0 . 0 / 0 to web port 80 proto tcp
from 0 . 0 . 0 . 0 / 0 to web port 443 proto tcp
from web to app port 8080 proto tcp
from app to db port 3306 proto tcp
from 0 . 0 . 0 . 0 / 0 to d e f a u l t port −1 proto icmp
from 1 . 2 . 3 . 4 / 2 4 to d e f a u l t port 22 proto tcp

Listing 7.1: Reachability Query File

The software will check for each query if the specified reachability is
fulfilled in the current configuration. The output for the previously shown
query file is given in Listing 7.2.

from 0 . 0 . 0 . 0 / 0 to web port 80 proto tcp
=> True
from 0 . 0 . 0 . 0 / 0 to web port 443 proto tcp
=> True
from web to app port 8080 proto tcp
=> True
from app to db port 3306 proto tcp
=> True
from 0 . 0 . 0 . 0 / 0 to d e f a u l t port −1 proto icmp
=> True
from 1 . 2 . 3 . 4 / 2 4 to d e f a u l t port 22 proto tcp
=> True

Listing 7.2: Reachability Query Output

In the second part we now specify the undesired reachability behavior and
verify if the current configuration allows such undesired behavior. The policy
file is shown in Listing 7.3 and implements the idea that except from the web
tier all other tiers should not be directly reachable from the Internet and that
the web can only be reached on the two common web server ports.

In this case the current configuration is compliant with the policy and
the software will indicate that by printing Reachability Policy valid:
True.
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never from 0 . 0 . 0 . 0 / 0 to app port any proto any
never from 0 . 0 . 0 . 0 / 0 to db port any proto any
only from 0 . 0 . 0 . 0 / 0 to web port 80 proto tcp and port 443 proto←↩

tcp

Listing 7.3: Reachability Policy File

7.3 Attack Graph Analysis Results
The more interesting security analysis is based on attack graphs which we
will demonstrate in this section.

7.3.1 Graph Construction
Since we only use one web server image for the demonstration, the resulting
attack graph is very simple. The web server contained in the image has a
medium rated vulnerability which can be potentially exploited by any attacker.
The resulting attack graph is illustrated in Figure 7.5.

0.0.0.0/0

ami-35e60f5c

80/tcp - Medium

Figure 7.5: SAVEly Attack Graph

7.3.2 Analysis
Due to the simplicity of the resulting attack graph of the demonstration
case, we consider the more complex attack graph shown in Chapter 6 in
Figure 6.3 to demonstrate the analysis. In the first part we demonstrate
the query language which supports an administrator to get an insight into
the vulnerability of services in the current configuration. The second part
deals with the policy language for specifying undesired properties of the
configuration in terms of service vulnerabilities and attack paths.
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A sample query file for the attack graph analysis is given in Listing 7.4.
The queries test the service vulnerability exposed to the Internet and the
corporate network, and the general vulnerability within the whole deployment.

from 0 . 0 . 0 . 0 / 0 to any vuln medium
from 0 . 0 . 0 . 0 / 0 to any vuln high
from 1 . 2 . 3 . 4 / 2 4 to any vuln medium
from any to any vuln high
from any to AMI2 vuln medium

Listing 7.4: Attack Query File

The output of the query analysis is given in Listing 7.5. For each query
the tool also provides the most likely attack paths which fulfill the query. For
example the first query, which tests which resources could be compromised by
any attackers exploiting medium rated vulnerabilities, provides us with three
potential paths resulting in the compromise of AMI1, AMI2, and AMI4.

from 0 . 0 . 0 . 0 / 0 to any vuln medium
=> [ [ ’ 0 . 0 . 0 . 0 / 0 ’ , ’AMI1’ , ’AMI2’ , ’AMI4 ’ ] , [ ’ 0 . 0 . 0 . 0 / 0 ’ , ’AMI1←↩

’ ] , [ ’ 0 . 0 . 0 . 0 / 0 ’ , ’AMI1’ , ’AMI2 ’ ] ]
True
from 0 . 0 . 0 . 0 / 0 to any vuln high
=> [ ]
Fa l se
from 1 . 2 . 3 . 4 / 2 4 to any vuln medium
=> [ [ ’ 1 . 2 . 3 . 4 / 2 4 ’ , ’AMI2’ , ’AMI4 ’ ] , [ ’ 1 . 2 . 3 . 4 / 2 4 ’ , ’AMI2 ’ ] , ←↩

[ ’ 0 . 0 . 0 . 0 / 0 ’ , ’AMI1’ , ’AMI2’ , ’AMI4 ’ ] , [ ’ 0 . 0 . 0 . 0 / 0 ’ , ’AMI1←↩
’ ] , [ ’ 0 . 0 . 0 . 0 / 0 ’ , ’AMI1’ , ’AMI2 ’ ] ]

True
from any to any vuln high
=> [ [ ’ 1 . 2 . 3 . 4 / 2 4 ’ , ’AMI2 ’ ] ]
True
from any to AMI2 vuln medium
=> [ [ ’ 1 . 2 . 3 . 4 / 2 4 ’ , ’AMI2 ’ ] , [ ’ 0 . 0 . 0 . 0 / 0 ’ , ’AMI1’ , ’AMI2 ’ ] , [ ’←↩

AMI1’ , ’AMI2 ’ ] ]
True

Listing 7.5: Attack Query Output

Now we demonstrate the ability of the tool to verify policies, i.e., to check
for undesired behavior. A simple policy file is shown in Listing 7.6 which
implements the idea that an administrator wants to be sure that no high
rated vulnerabilities exists in the deployed multi-tier application and that at
maximum low rated vulnerabilities are exposed to any attacker.
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never from any to any vuln high
only from 0 . 0 . 0 . 0 / 0 to any vuln low

Listing 7.6: Attack Policy File

The output of the policy analysis is given in Listing 7.7. Reconsidering
the query output previously shown, it is not surprising that both policies
are violated by the current configuration. The second last query returned a
potential attack paths using a high rated vulnerability between 1.2.3.4/24
and AMI2, which can be manually verified using the illustration of the attack
graph in Figure 6.3. The second policy is violated because several attack
paths for any attacker exist using medium rated vulnerabilities as shown
using the first query.

Attack Po l i cy v a l i d :
p o l i c y ( ’ any ’ , ’ any ’ , ’ high ’ ) v i o l a t i o n : [ [ ’ 1 . 2 . 3 . 4 / 2 4 ’ , ’AMI2←↩

’ ] ]
p o l i c y ( ’ 0 . 0 . 0 . 0 / 0 ’ , ’ any ’ , ’medium ’ ) v i o l a t i o n : ←↩

[ [ ’ 0 . 0 . 0 . 0 / 0 ’ , ’AMI1’ , ’AMI2’ , ’AMI4 ’ ] , [ ’ 0 . 0 . 0 . 0 / 0 ’ , ’←↩
AMI1 ’ ] , [ ’ 0 . 0 . 0 . 0 / 0 ’ , ’AMI1’ , ’AMI2 ’ ] ]

Fa l se

Listing 7.7: Attack Policy Output

The policy violation detection with given counter-examples will be very
useful for an administrator to fix discovered vulnerabilities in the deployed
complex multi-tier application.
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Chapter 8

Outlook & Open Questions

In this chapter we will give an outlook of possible future work, and we will
present remaining open questions for future research directions.

8.1 Hybrid Cloud Analysis
The current state of the SAVE prototype covers the discovery and analysis
of private clouds, and this thesis extended the prototype for the discovery
of public clouds. In case an organization operates a private cloud and also
leverages resources provided by a public cloud provider, the current SAVE
prototype will handle these two clouds as individual entities rather than
having an integrated view on this hybrid cloud setup.

Future work would consist of extending the SAVE prototype in a way to
handle such hybrid clouds. Amazon Virtual Private Cloud (VPC), which was
already discussed in Section 2.3, could be used as a specific example scenario
for an initial implementation. The basic idea is to discover VPN endpoints in
the private cloud and match them with the VPN configuration deployed on
Amazon, therefore “stitching” together both clouds by the concept of a VPN
tunnel.

Having this integrated view opens up further analysis possibilities, e.g.,
what resources of the public cloud are used by applications in the organization’s
own private cloud and how information are flowing from the private to the
public cloud. A possible scenario would be the following one: A file server in
the private cloud of an enterprise is becoming low on storage capacity and
leverages additional storage resources from a public cloud provider. Since
the file server abstracts the usage of public cloud resources, confidential or
sensitive information might be stored on this external storage resources.
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8.2 Amazon Security Group Transformation
In Section 6.1 we presented a method to transform Amazon Security Group
configuration based on insights obtained in the analysis of reachability and
attack graphs. We identified two approaches for future work in order to
improve and increase the accuracy of the transformation method.

Besides splitting security groups, it would also be interesting to split AMIs.
In case an AMI contains multiple services with different severity ratings, the
high severity services should be isolated from the other ones. This splitting
of an AMI is more difficult to automate, since we have to understand the
configuration of the service we want to isolate, in order to move it to a
separate AMI. The open question is how to safely extract services from an
operating system image without breaking the functionality of the service and
potential dependencies of services hosted on the same image.

Another improvement for increasing the accuracy of the transformation
and automating the whole process is the automated discovery of service
dependencies. For example, if we could discovery that two AMIs communicate
using a certain protocol and port in one direction, we could place these AMIs
in different security groups and only specify for one group to allow that
specific port and protocol.

8.3 Design Tool
The current main functionality of the SAVE and SAVEly prototypes is to
audit and visualize the current configuration of virtualized environments and
multi-tier application deployments respectively. In order to further support
administrators of such environments and deployments regarding security
decisions, a design tool providing immediate feedback on possible changes
would be desired. For example, an administrator could move VMs/AMIs from
one security group to another and the tool would provide immediate feedback
on reachability and service vulnerability issues. In case the change does not
have any undesired side effects, it can be deployed by the administrator in an
easy way. In general we are interested in What-If analysis for changes done
in virtualized environments or multi-tier application deployments.

8.4 Complex Firewall Rules Analysis
Amazon opted for a simple firewall scheme implemented in their security
groups suitable for the majority of customers but limited in its functionality.
Outbound filtering can not be achieved, changing the default firewall behavior
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to accept and explicitly specify deny rules is not possible, and further firewall
capabilities like stateful rules and handling protocols besides TCP, UDP, and
ICMP, are not implemented.

In case that Amazon will introduce more advanced firewall features to
cope with enterprise demands, the complexity of the firewall rules used by
security groups will increase and hence requires more sophisticated analysis
approaches. A wide body of research in complex firewall rules analysis,
e.g., [BMNW04, MWZ00, YMS+06, MWZ00], could be applied to this new
scenario.

8.5 SAVEly for Private Clouds
Another open question is how the analysis techniques presented for the
Amazon cloud can be transferred to private clouds where information about
the configuration are harder to extract. For example, can we use the concept of
security groups also in the private cloud scenario, i.e., a set of VMs hosted on
a physical server which is protected by a firewall can be in a “security group”
depending on the firewall configuration. Understanding the relationship
between the firewall rules and VMs is crucial for extracting security groups
from a private cloud.

Furthermore, spawning instances of production VMs for security analysis
purposes, in order that the original VM is not affected by the analysis,
can be more difficult in private cloud environments where the management
infrastructure could be less automated, not ready for programmatic use, and
more heterogeneous.
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Chapter 9

Conclusion

In this thesis we presented a novel approach of assessing the security of
multi-tier applications deployed in infrastructure clouds using Amazon EC2
as an example case. The security assessment consists of a discovery step for
obtaining the current configuration of the deployment, which is transformed
into a generic data model capable of handling heterogeneous virtual envi-
ronments. Based on the obtained configuration, we are able to analyze the
system with regard to two properties: reachability and services vulnerabilities.
For both cases, a query language and processor allow administrators to get
an insight into the reachability and vulnerability of the services, e.g., in
order to detect misconfigurations which expose the wrong services or to find
vulnerable services. Furthermore, a policy language allows the specification of
the desired state of the system which can be periodically verified. We discuss
and compare two possible methods of deploying multi-tier applications in the
Amazon cloud with regard to the provided isolation levels. Finally, another
process of the security assessment is presented which monitors and evaluates
configuration changes with regard to vulnerability impact. This allows an
administrator to track the vulnerability of the deployment over time and get
alarmed in case the security decreases with regard to a base configuration.
We also give an outlook how the configuration changes evaluation can be
extended beyond a vulnerability perspective in order to cover different aspects
like expected availability and replication.

We implemented the security assessment in Python and evaluated it
against a sample multi-tier application on Amazon EC2. Violations in the
vulnerability policies were successfully detected, and possible attack paths
were presented to the administrator in order to enable him to secure the
involved services. Besides that practical evaluation, we also evaluated the
theoretical complexity of the algorithms involved in the analysis process for
large input configurations. We discussed hypothetical and realistic upper-
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bounds for the complexity of the input configurations, in order to successfully
demonstrate the feasibility of the assessment even for large deployments.

Finally, we discussed open questions and provided an outlook of future
research directions. For example the presented tools could be extended to
a comprehensive design tool for virtual infrastructures including the visu-
alization and analysis of the current state, deploying changes made in the
tool directly for the virtual infrastructure, and also provide a framework for
doing what-if analysis for trying out different configuration changes and their
impact before they are deployed.

In conclusion, we can say that our security assessment will be a valuable
tool for administrators of multi-tier applications deployed in infrastructure
clouds like Amazon EC2. Troubleshooting using the query languages can be
done and the policy language allows a specification of the desired state, in
order that the deployment remains secure. The monitoring of the configuration
changes regarding vulnerability impact will allow an administrator to track
the security of the virtual infrastructure over its lifetime, and enables him to
intervene in case the security degrades below a certain threshold. Our practical
and theoretical evaluation demonstrates the feasibility of this approach even
for large deployments.
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Appendix A

Amazon EC2 Architecture
Details

In this appendix chapter we will provide more details about the underlying
architecture of Amazon EC2. The information in this chapter were gathered
from XenStore, which holds configuration information about all domains.
A domain can read its own configuration information from XenStore using
xenstore-ls, which is part of the xen utils package. The actual XenStore
dump is presented in Listing A.1.

A.1 Storage

A.1.1 Instance Storage
Instance Storage appears as 3 partitions to the VM: sda1 for root, sda2
for extra storage space (/mnt), and sda3 for swap. Typically the backend
of these virtual block devices are based on loopback devices and/or LVM
logical volumes. Logical volumes are considered to have a better performance
and reliability compared to loopback devices. Surprisingly, sda1 is using a
loopback backend as noted as node = “/dev/loop13” in the XenStore VBD
entry. The actual file used by the loopback device is params = “/mnt/in-
stance_image_store_3/262768”. The suffix “_3” of the directory is probably
based on the local domain number. The numerical filename of the image is
related to the AMI ID, but the external AMI is in fact encoded.

The swap device is a LVM logical volume denoted as params = “/dev/Vol-
GroupDomU/instance_swap_store_3” in XenStore. The extra storage space
/mnt is also using a logical volume backend: params = “/dev/mapper/cow-
VolGroupDomU-instance_ephemeral_store_3”. As indicated by cow, this
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volume is using copy-on-write functionality.

A.1.2 Elastic Block Storage
The characteristics of the Elastic Block Store (EBS) lead to the conclusion
that it is a SAN-based setup, i.e., based on iSCSI volumes. In fact it is based
on Global Network Block Device (GNBD) as indicated by the backend device
of a EBS: params = “/dev/gnbd89”.

A.2 Networking
Amazon uses a routed Xen network setup with DHCP providing private IP
addresses to the VMs, which can be derived from the network script name:
script = “/etc/xen/scripts/ec2-vif-route-dhcpd” in XenStore. A traceroute
will show the private IP address of the router in Dom0, as well as the external
IP address of Dom0.

A.3 Domain Naming
Via XenStore one can also determine the name of a VM, which is in this
example domain = “dom_32504936”. Assuming this suffix number of the
name is incremental and unique throughout the lifetime of EC2, one could
deduce usage numbers from the domain names.

A.4 XenStore Dump

vm = "/vm/00000000−0000−0000−0000−0 ec232504936 "
dev i c e = " "

v i f = " "
0 = " "

backend−id = "0 "
mac = " 1 2 : 3 1 : 3 9 : 0B: 2 5 : 7 7 "
handle = "0 "
s t a t e = "4 "
backend = "/ l o c a l /domain/0/ backend/ v i f /151/0"
tx−r ing−r e f = "768"
rx−r ing−r e f = "769"
event−channel = "6 "
request−rx−copy = "0 "
f ea ture−rx−n o t i f y = "1 "
f ea ture−sg = "1 "
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f ea ture−gso−tcpv4 = "1 "
vbd = " "

2049 = " "
backend−id = "0 "
v i r t u a l−dev i c e = "2049"
device−type = " d i sk "
s t a t e = "4 "
backend = "/ l o c a l /domain/0/ backend/vbd /151/2049"
r ing−r e f = "770"
event−channel = "7 "
p ro to co l = " x86_32−abi "

2050 = " "
backend−id = "0 "
v i r t u a l−dev i c e = "2050"
device−type = " d i sk "
s t a t e = "4 "
backend = "/ l o c a l /domain/0/ backend/vbd /151/2050"
r ing−r e f = "771"
event−channel = "8 "
p ro to co l = " x86_32−abi "

2051 = " "
backend−id = "0 "
v i r t u a l−dev i c e = "2051"
device−type = " d i sk "
s t a t e = "4 "
backend = "/ l o c a l /domain/0/ backend/vbd /151/2051"
r ing−r e f = "772"
event−channel = "9 "
p ro to co l = " x86_32−abi "

c o n t r o l = " "
e r r o r = " "
device−misc = " "

v i f = " "
nextDeviceID = "1 "

conso l e = " "
r ing−r e f = "2365586"
port = "2 "
l i m i t = "1048576"
t ty = "/ dev/ pts /4"

name = " dom_32504936 "
domid = "151"
cpu = " "

0 = " "
a v a i l a b i l i t y = " o n l i n e "

memory = " "
t a r g e t = "1740800"

s t o r e = " "
r ing−r e f = "2365587"
port = "1 "
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VBD:

domain = " dom_32504936 "
f rontend = "/ l o c a l /domain/151/ dev i ce /vbd /2050"
dev = " sda2 "
s t a t e = "4 "
params = "/ dev/mapper/cow−VolGroupDomU−←↩

instance_ephemeral_store_3 "
mode = "w"
o n l i n e = "1 "
frontend−id = "151"
type = " phy "
phys i ca l−dev i c e = " fd : 2 c "
hotplug−s t a tu s = " connected "
s e c t o r s = "312705024"
i n f o = "0 "
s ec to r−s i z e = "512"

domain = " dom_32504936 "
f rontend = "/ l o c a l /domain/151/ dev i ce /vbd /2051"
dev = " sda3 "
s t a t e = "4 "
params = "/ dev/VolGroupDomU/ instance_swap_store_3 "
mode = "w"
o n l i n e = "1 "
frontend−id = "151"
type = " phy "
phys i ca l−dev i c e = " fd : 1 0 "
hotplug−s t a tu s = " connected "
s e c t o r s = "1835008"
i n f o = "0 "
s ec to r−s i z e = "512"

domain = " dom_32504936 "
f rontend = "/ l o c a l /domain/151/ dev i ce /vbd /2049"
dev = " sda1 "
s t a t e = "4 "
params = "/mnt/ instance_image_store_3 /262768"
mode = "w"
o n l i n e = "1 "
frontend−id = "151"
type = " f i l e "
node = "/ dev/ loop13 "
phys i ca l−dev i c e = " 7 : d "
hotplug−s t a tu s = " connected "
s e c t o r s = "20971520"
i n f o = "0 "
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s ec to r−s i z e = "512"

VIF :

domain = " dom_32504936 "
handle = "0 "
s c r i p t = "/ e tc /xen/ s c r i p t s /ec2−v i f−route−dhcpd "
s t a t e = "4 "
f rontend = "/ l o c a l /domain/151/ dev i ce / v i f /0"
mac = " 1 2 : 3 1 : 3 9 : 0B: 2 5 : 7 7 "
o n l i n e = "1 "
frontend−id = "151"
f ea ture−sg = "1 "
f ea ture−gso−tcpv4 = "1 "
f ea ture−rx−copy = "1 "
hotplug−s t a tu s = " connected "

EBS:

domain = " dom_32504936 "
f rontend = "/ l o c a l /domain/151/ dev i ce /vbd /2128"
dev = " sd f "
s t a t e = "4 "
params = "/ dev/gnbd89 "
mode = "w"
o n l i n e = "1 "
frontend−id = "151"
type = " phy "
phys i ca l−dev i c e = " f c : 5 9 "
s e c t o r s = "2097152"
i n f o = "0 "
s ec to r−s i z e = "512"
hotplug−s t a tu s = " connected "

Listing A.1: Amazon EC2 XenStore Dump
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Data Models

B.1 Realization Model
Figure B.1 on page 93.
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RealizedMachine

isRunning : Boolean

start ( )

stop ( )

VirtualMachine

id : Integer

name : String

create ( )

delete ( )

PhysicalMachine

name : String

add ( )

cleanUp ( )

remove ( )

XenVirtualMachine VMWareVirtualMachine

VirtualMachineHost

install ( )

XenVirtualMachineHost

VMWareVirtualMachineHost

File

relativePath : String

BlockDevice

device : String

FileSystem

device : String

name : String

type : String

RemoteDisk

id : String

VirtualSwitch

VMDisk

NetDevice

up : Boolean

device : String

mac : String

Admin

For security analysis,

it is useful also to

keep track of

historical

assignments &...

PhysicalSwitch

Port

enabled : Boolean

trunked : Boolean

trunksVLAN : Integer
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bridge−nf−call−iptables : Boolean
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type : String
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VLANNetDevice

vlanID : Integer
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Evenutally, we should capture how the storage provider is reached from the host.  In particular, this is interesting if we have converged networks.

In this context, we might have to model SAN networks, too?!
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the on−disk representation of a file.  
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hierachical domains & single domain
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representation of VirtualMachines (e.g., Xen

config/VMWare *.vmx) linking to RealizedDisks;
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B.2. LOGICAL MODEL

B.2 Logical Model
Figure B.2 on page 95.
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LogicalMachine

isRunning : Boolean

clonable : Boolean

otherAttributes

start ( )

stop ( )

clone ( )

LogicalDomain
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create ( )

delete ( )
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delete ( )

LogicalMachineT...

name : String

type : String
instantiate ( domain :...
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B.3. INTEGRATED REALIZATION MODEL

B.3 Integrated Realization Model
Figure B.3 on page 97.
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RealizedMachine

isRunning : Boolean

start ( )

stop ( )

VirtualMachine

id : Integer

name : String

create ( )

delete ( )

PhysicalMachine
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add ( )

cleanUp ( )

remove ( )

XenVirtualMachine
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install ( )
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File

relativePath : String
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RemoteDisk
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VirtualSwitch
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NetDevice
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Port
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PowerVirtualMachineHost

PowerHypSwitch
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Appendix C

SAVE Examples

C.1 Colored Realization Model

C.1.1 Coloring Policy

<AnalysisParams>
<co l o rFac t s>

<EnumeratedColorFact t a r g e t=" i tvdc . ManagementOS">
<p r e f i x>management</ p r e f i x>
<count>1</ count>

</EnumeratedColorFact>
<CompositeFact name=" DevTest " e x p l i c i t=" f a l s e ">

<t a r g e t>
<NodeTypeMatch type=" i tvdc . Fi leSystem " />
<NodeAttrMatch attrName="name" matchRegExpr="←↩

salva_vmware " />
</ t a r g e t>
<value c l a s s=" FixedValue ">

<value>i s o l a t e d−group</ value>
</ value>

</CompositeFact>
</ co l o rFac t s>
<co lo rRu l e s>

<FollowRule source=" i tvdc . ManagementOS" t a r g e t=" i tvdc .←↩
VirtualMachineHost " b i d i r=" t rue " />

<FollowRule source=" i tvdc . VirtualMachineHost " t a r g e t=" i tvdc←↩
. PhysicalMachine " b i d i r=" t rue " />

<FollowRule source=" i tvdc . ManagementOS" t a r g e t=" i tvdc .←↩
Router " b i d i r=" t rue " />

<FollowRule source=" i tvdc . Router " t a r g e t=" i tvdc . I P I n t e r f a c e←↩
" b i d i r=" t rue " />
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C.1. COLORED REALIZATION MODEL

<FollowRule source=" i tvdc . NetDevice " t a r g e t=" i tvdc .←↩
I P I n t e r f a c e " b i d i r=" true " />

<CompositeRule name=" StopAtDisabledPort " ac t i on=" stop ">
<source>

<NodeTypeMatch type=" i tvdc . NetDevice " />
</ source>
<t a r g e t>

<NodeTypeMatch type=" i tvdc . Port " />
<NodeAttrMatch attrName=" enabled " matchRegExpr=" f a l s e " /←↩

>
</ t a r g e t>

</CompositeRule>
<FollowRule source=" i tvdc . NetDevice " t a r g e t=" i tvdc . Port " ←↩

b i d i r=" t rue " />

<CompositeRule name=" VlanEncapDefault " a c t i on=" f o l l o w ">
<source>

<NodeTypeMatch type=" i tvdc . Port " />
<OrNodeMatch>

<NodeAttrMatch attrName=" defaultVLAN " matchRegExpr=" 0←↩
" />

<InvNodeMatch>
<NodeAttrMatch attrName=" defaultVLAN " matchRegExpr=←↩

" .∗ " />
</InvNodeMatch>

</OrNodeMatch>
</ source>
<t a r g e t>

<NodeTypeMatch type=" i tvdc . NetworkSwitch " />
</ t a r g e t>

</CompositeRule>

<CompositeRule name=" VlanEncap " ac t i on=" f o l l o w ">
<source>

<NodeTypeMatch type=" i tvdc . Port " />
<NodeAttrMatch attrName=" defaultVLAN " matchRegExpr=" .∗ "←↩

/>
<InvNodeMatch>

<NodeAttrMatch attrName=" defaultVLAN " matchRegExpr=" 0←↩
" />

</InvNodeMatch>
</ source>
<t a r g e t>

<NodeTypeMatch type=" i tvdc . NetworkSwitch " />
</ t a r g e t>
<colorTransform c l a s s=" ColorTagPush ">

<tagName>vlan</tagName>
<tagValue c l a s s=" SourceNodeAttr ">
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C.1. COLORED REALIZATION MODEL

<attrName>defaultVLAN</attrName>
</ tagValue>

</ colorTransform>
</CompositeRule>

<CompositeRule name=" VlanDecap " ac t i on=" f o l l o w ">
<source>

<NodeTypeMatch type=" i tvdc . NetworkSwitch " />
</ source>
<t a r g e t>

<NodeTypeMatch type=" i tvdc . Port " />
<NodeAttrMatch attrName=" defaultVLAN " matchRegExpr=" .∗ "←↩

/>
</ t a r g e t>
<c o l o r>

<ColorTagMatch name=" vlan ">
<value c l a s s=" TargetNodeAttr ">

<attrName>defaultVLAN</attrName>
</ value>

</ColorTagMatch>
</ c o l o r>
<colorTransform c l a s s=" ColorTagPop " />

</CompositeRule>

<CompositeRule name=" VlanDecapDefault " a c t i on=" f o l l o w ">
<source>

<NodeTypeMatch type=" i tvdc . NetworkSwitch " />
</ source>
<t a r g e t>

<NodeTypeMatch type=" i tvdc . Port " />
<OrNodeMatch>

<NodeAttrMatch attrName=" defaultVLAN " matchRegExpr=" 0←↩
" />

<InvNodeMatch>
<NodeAttrMatch attrName=" defaultVLAN " matchRegExpr=←↩

" .∗ " />
</InvNodeMatch>

</OrNodeMatch>
</ t a r g e t>
<c o l o r>

<InvColorMatch>
<ColorTagMatch name=" vlan " />

</InvColorMatch>
</ c o l o r>

</CompositeRule>

<CompositeRule name=" VlanDecapTrunked " ac t i on=" f o l l o w ">
<source>

<NodeTypeMatch type=" i tvdc . NetworkSwitch " />
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</ source>
<t a r g e t>

<NodeTypeMatch type=" i tvdc . Port " />
<NodeAttrMatch attrName=" trunked " matchRegExpr=" true " />

</ t a r g e t>
</CompositeRule>

<FollowRule source=" i tvdc . VirtualMachine " t a r g e t=" i tvdc .←↩
VirtualVMNetDevice " b i d i r=" t rue " />

<CompositeRule name=" IgnoreHotpluggable " ac t i on=" stop ">
<t a r g e t>

<NodeTypeMatch type=" i tvdc . VMWareDisk" />
<NodeAttrMatch attrName=" hotPluggable " matchRegExpr="←↩

t rue " />
</ t a r g e t>

</CompositeRule>

<FollowRule source=" i tvdc . VirtualMachine " t a r g e t=" i tvdc .←↩
VBDFrontend " b i d i r=" t rue " />

<FollowRule source=" i tvdc . VBDFrontend " t a r g e t=" i tvdc .←↩
VBDBackend" b i d i r=" t rue " />

<CompositeRule name=" Fi lePath " ac t i on=" f o l l o w ">
<source>

<NodeTypeMatch type=" i tvdc . F i l e " />
</ source>
<t a r g e t>

<NodeTypeMatch type=" i tvdc . Fi leSystem " />
</ t a r g e t>
<colorTransform c l a s s=" ColorTagPush ">

<tagName>f i l e P a t h</tagName>
<tagValue c l a s s=" SourceNodeAttr ">

<attrName>re l a t i v ePa t h</attrName>
</ tagValue>

</ colorTransform>
</CompositeRule>

<CompositeRule name=" RemoteStorage " ac t i on=" f o l l o w ">
<source>

<NodeTypeMatch type=" i tvdc . Fi leSystem " />
</ source>
<t a r g e t>

<NodeTypeMatch type=" i tvdc . StorageProv ider " />
</ t a r g e t>
<c o l o r>

<ColorNoTagsMatch/>
</ c o l o r>
<colorTransform c l a s s=" ColorTagPush ">
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<tagName>share</tagName>
<tagValue c l a s s=" SourceNodeAttr ">

<attrName>dev i ce</attrName>
</ tagValue>

</ colorTransform>
</CompositeRule>

<CompositeRule name=" Fi leSystemBaseColored " ac t i on=" f o l l o w "←↩
>

<source>
<NodeTypeMatch type=" i tvdc . Fi leSystem " />

</ source>
<t a r g e t>

<NodeTypeMatch type=" i tvdc . Node " />
</ t a r g e t>
<c o l o r>

<ColorNoTagsMatch/>
</ c o l o r>

</CompositeRule>
</ co lo rRu l e s>

</ AnalysisParams>

Listing C.1: SAVE Coloring Policy

C.1.2 Figure
Figure C.1 on page 103.
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Appendix D

SAVEly Implementation

import sys
import time
import copy
import os
import t e m p f i l e
import Conf igParser
import subproces s
import re
from datet ime import datet ime
from xml . e t r e e . ElementTree import ElementTree

import networkx as nx

from boto . ec2 . connect ion import EC2Connection

import netaddr
from netaddr import IPSet

# Globa l AWS connect ion and c o n f i g u r a t i o n
aws_conn = None
c o n f i g = None

# Caches
cache_subeq = {}

#
# Helper Functions
#

# Return d i c t i o n a r y keyed by s e c u r i t y group name with a l i s t o f←↩
f i r e w a l l r u l e s
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# in form of a t u p l e :
# ( source , type o f source , low port , h igh port , p r o t o c o l )
def get_sgs_rules ( sg s ) :

r u l e s = {}
for sg in sg s :

i f not sg . name in r u l e s :
r u l e s [ sg . name ] = [ ]

for r in sg . r u l e s :
for gr in r . g rants :

# IP−based source
i f gr . c idr_ip :

s , t = gr . c idr_ip , ’ ip ’
# Secur i t y Group−based source
else :

s , t = gr . name , ’ sg ’
r u l e s [ sg . name ] . append ( ( s , t , r . from_port , r .←↩

to_port ,
r . ip_protoco l ) )

return r u l e s

# Return d i c t i o n a r y keyed by s e c u r i t y group name with a l i s t o f←↩
AMIs running in

# t h a t s e c u r i t y group
def get_sgs_amis ( r e s ) :

amis = {}
for r in r e s :

for g in r . groups :
amis [ g . id ] = [ ]
for i in r . i n s t a n c e s :

i . update ( )
i f i . s t a t e in [ ’ pending ’ , ’ running ’ ] :

amis [ g . id ] . append ( i . image_id )
return amis

# Returns t rue i f s1 i s s u b s e t or equa l to s2
# Check i s slow , t h e r e f o r e we cache
def i s_src_subeq ( s1 , s2 ) :

global cache_subeq
i f ( s1 , s2 ) in cache_subeq :

return cache_subeq [ ( s1 , s2 ) ]
try :

# Try CIDR
s1_ , s2_ = IPSet ( [ s1 ] ) , IPSet ( [ s2 ] )
b = s1_ . i s s u b s e t ( s2_ )
cache_subeq [ ( s1 , s2 ) ] = b
return b

except netaddr . core . AddrFormatError :
# Sec Groups
b = s1 == s2
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cache_subeq [ ( s1 , s2 ) ] = b
return b

def visual_graph (g , f i l e ) :
d = nx . to_pydot ( g , f i l e )
d . write_png ( f i l e )
#d . write_ps ( f i l e + ’. ps ’ )

#
# R e a c h a b i l i t y Graphs Construct ion
#

# Construct the R e a c h a b i l i t y Graph based on the d i s cove red ←↩
Secur i t y Groups

def build_sg_reach ( sgs ) :
def edge_label ( p1 , p2 , proto ) :

p = s t r ( p1 )
i f p1 <> p2 :

p = s t r ( p1 ) + ’− ’ + s t r ( p2 )
return p + ’ / ’ + proto

r u l e s = get_sgs_rules ( sg s )
g = nx . MultiDiGraph ( )

for sg in sg s :
g . add_node ( sg . name)
for ( s , t , p1 , p2 , proto ) in r u l e s [ sg . name ] :

i f not s in g :
g . add_node ( s , type=t )

g . add_edge ( s , sg . name , l a b e l=edge_labe l ( p1 , p2 , ←↩
proto ) )

return g

# Extend a R e a c h a b i l i t y Graph wi th AMI memberships
def build_sg_ami ( sgs , r e s ) :

g = build_sg_reach ( sgs )
amis = get_sgs_amis ( r e s )

for ( sg , amis ) in amis . i t e r i t e m s ( ) :
for ami in amis :

i f not ami in g :
g . add_node ( ami )

i f not g . has_edge ( sg , ami ) :
g . add_edge ( sg , ami , l a b e l=’ conta in s ’ )

return g
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#
# Attack Graph Construct ion
#

# Analyze ( i . e . v u l n e r a b i l i t y scan ) a s p e c i f i c running in s tance←↩
and re turn a

# l i s t o f t u p l e s :
# ( port , proto , max s e v e r i t y r a t i n g )
def ana lyze_instance ( i n s ) :

def rmax( r s ) :
w = { ’None ’ : 0 , ’Low ’ : 1 , ’Medium ’ : 2 , ’ High ’ : 3}
max = 0
maxr = ’None ’
for r in r s :

i f w[ r ] > max :
maxr = r
max = w[ r ]

return maxr

ra t e = {}

print ’ ana lyze : ’ , i n s . image_id , i n s . public_dns_name

user = c o n f i g . get ( ’OpenVAS ’ , ’ user ’ )
pw = c o n f i g . get ( ’OpenVAS ’ , ’ pass ’ )
host = c o n f i g . get ( ’OpenVAS ’ , ’ host ’ )
port = c o n f i g . get ( ’OpenVAS ’ , ’ port ’ )

# crea t e t a r g e t f i l e
t = os . path . j o i n ( t e m p f i l e . gettempdir ( ) , ’ savely_target_ ’ + ←↩

i n s . image_id )
f = open ( t , ’w ’ )
f . wr i t e ( i n s . dns_name + ’ \n ’ )
f . c l o s e ( )

# fi l ename fo r scan r e s u l t
r = os . path . j o i n ( t e m p f i l e . gettempdir ( ) , ’ savely_scan_ ’ + ←↩

i n s . image_id )

# execu te OpenVAS
r e t = subproces s . c a l l ( [ ’OpenVAS−Cl i en t ’ , ’−T ’ , ’ xml ’ , ’−q ’ ,←↩

host , port , user ,
pw, t , r ] )

# Parse OpenVAS/Nessus scan r e s u l t
x = ElementTree ( )
x . parse ( r )
por t s = x . f i n d a l l ( ’ . // por t s / port ’ )
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r i s k = re . compi le ( ’ Risk f a c t o r : (\w+) ’ )
for p in por t s :

i f not ’ po r t id ’ in p . a t t r i b :
continue

port = p . a t t r i b [ ’ po r t id ’ ]
proto = p . a t t r i b [ ’ p r o to co l ’ ]
i f not port in r a t e :

r a t e [ ( port , proto ) ] = [ ]
data = p . f i n d a l l ( ’ in fo rmat ion / data ’ )
for d in data :

m = r i s k . search (d . t ex t )
i f not m i s None :

r a t e [ ( port , proto ) ] . append (m. group (1 ) )

# Dele te temp f i l e s
os . remove ( r )
os . remove ( t )

return map(lambda ( ( port , proto ) , r s ) : ( port , proto , rmax(←↩
r s ) ) , r a t e . i t e r i t e m s ( ) )

# Analyze a l i s t o f AMIs by spawning new in s t ance s o f each AMI ←↩
in a s p e c i a l

# scanning s e c u r i t y group and re turn a v u l n e r a b i l i t y r a t i n g f o r←↩
each AMI ’ s

# s e r v i c e s
def analyze_amis ( ami_ids ) :

r a t e = {}
runs = [ ]

# Create secgroup f o r scanning
scan = aws_conn . create_secur i ty_group ( ’ savely_scan ’ , ’ scan ←↩

f o r save ly ’ )
source = c o n f i g . get ( ’ Scan ’ , ’ source ’ )
scan . au tho r i z e ( ’ tcp ’ , 1 , 65535 , source )
scan . au tho r i z e ( ’ udp ’ , 1 , 65535 , source )
scan . au tho r i z e ( ’ icmp ’ , −1, −1, source )

# Launch AMI
amis = aws_conn . get_al l_images ( image_ids=ami_ids )
for a in amis :

print ’ run in s t anc e ’ , a . id
runs . append ( a . run ( secur i ty_groups =[ scan ] ) )

# Wait f o r running in s t ance s and then scan
r s = copy . copy ( runs )
while l en ( r s ) > 0 :

sys . s tdout . wr i t e ( ’ . ’ )
sys . s tdout . f l u s h ( )
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time . s l e e p (5 )
for r in r s :

i = r . i n s t a n c e s [ 0 ]
i . update ( )
i f i . s t a t e == ’ running ’ :

r s . remove ( r )
r a t e [ i . image_id ] = analyze_instance ( i )

# Terminate in s t ance s
for r in runs :

r . i n s t a n c e s [ 0 ] . s top ( )

# Remove scan secgroup
scan . d e l e t e ( )

return r a t e

def bui ld_attack ( sgs , r e s ) :
# Obtain s e v e r i t y r a t i n g s f o r AMIs
def get_rat ings ( ) :

ami_ids = [ ]
for r in r e s :

for i in r . i n s t a n c e s :
i f i . s t a t e <> ’ running ’ :

continue
id = i . image_id
i f id in ami_ids :

continue
ami_ids . append ( id )

return analyze_amis ( ami_ids )

def i s_port_al lowed ( port , proto , r u l e ) :
( s , t , p1 , p2 , pr ) = r u l e
return pr == proto and ( i n t ( p1 ) <= i n t ( port ) and i n t (←↩

port ) <= i n t ( p2 ) )

g = nx . MultiDiGraph ( )

r a t e s = get_rat ings ( )
r u l e s = get_sgs_rules ( sg s )

# cons t ruc t a t t a c k graph
amis = get_sgs_amis ( r e s )
for ( sg , amis ) in amis . i t e r i t e m s ( ) :

for ami in amis :
for ( port , proto , r a t e ) in r a t e s [ ami ] :

i f r a t e == ’None ’ :
continue

for r u l e in r u l e s [ sg ] :

109



i f i s_port_al lowed ( port , proto , r u l e ) :
# add r u l e source
i f not r u l e [ 0 ] in g :

g . add_node ( r u l e [ 0 ] , type=r u l e [ 1 ] )

# add AMI
i f not ami in g :

g . add_node ( ami )

# edge between source and ami wi th por t←↩
and r a t i n g

l = port + ’ / ’ + proto + ’ − ’ + ra t e
g . add_edge ( r u l e [ 0 ] , ami , l a b e l=l , r a t e=←↩

r a t e )

return g

#
# R e a c h a b i l i t y Query and Po l i cy Process ing
#

def _reach_parse (q , p r e f i x=’ ’ ) :
# TODO: f i x space s e n s i t i v i t y
r = p r e f i x + ’ from (?P<src >.+) to (?P<dst >.+) port \

(?P<p1>.+?) (?:−(?P<p2>.+) ) ? proto (?P<proto >\w+) ’
m = re . match ( r , q )
i f m i s None :

raise Exception ( ’ parse e r r o r in : ’ + q )
return m. groups ( )

# ge t edges concerning source ’ s ’ and d e s t i n a t i o n ’ d ’
def get_rel_edges ( g , s , d ) :

e s = [ ]
for e in g . edges ( data=True ) :

i f ( s == ’ any ’ or i s_src_subeq ( s , e [ 0 ] ) ) \
and (d == ’ any ’ or d == e [ 1 ] ) :

e s . append ( e )
return es

def parse_edge_label ( l a b e l ) :
ps , proto = l a b e l . s p l i t ( ’ / ’ )
m = re . match ( ’ (\d+)−(\d+) ’ , ps )
i f not m i s None :

p1 , p2 = i n t (m. group (1 ) ) , i n t (m. group (2) )
else :

p1 = p2 = i n t ( ps )
return ( p1 , p2 , proto )
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def parse_only_pol icy (p) :
i f not ’ and ’ in p :

return [ _parse (p , ’ only ’ ) ]

pre = p . s p l i t ( ’ port ’ ) [ 0 ]
por t s = map(lambda x : x . s t r i p ( ) , p . s p l i t ( ’ and ’ ) )
r = [ _reach_parse ( por t s [ 0 ] , ’ only ’ ) ]
for port in por t s [ 1 : ] :

r . append ( _reach_parse ( pre + port , ’ only ’ ) )

return r

def parse_never_pol icy (p) :
return _reach_parse (p , ’ never ’ )

def reach_never_pol icy ( g , p) :
return reach_query (g , p) == False

# v e r i f y e x c l u s i v e n e s s o f on ly p o l i c y
def i s_on ly_exc lus ive ( g , ps ) :

s , d = ps [ 0 ] [ : 2 ]

for e in get_rel_edges ( g , s , d ) :
b = d i c t ( [ ( p , True ) for p in ps ] )
p1_ , p2_ , proto = parse_edge_label ( e [ 2 ] [ ’ l a b e l ’ ] )

for p in ps :
( p1 , p2 , pr ) = p [ 2 : ]
i f p2 i s None :

p2 = p1
i f ( pr <> ’ any ’ and pr <> proto ) or \

( p1 <> ’ any ’ and (p1_ < i n t ( p1 ) or i n t ( p2 ) ←↩
< p2_) ) :
b [ p ] = False

i f not True in b . va lue s ( ) :
return False

return True

def reach_only_pol icy ( g , ps ) :
reach = a l l (map(lambda p : reach_query (g , p) , ps ) )
e x c l = i s_on ly_exc lus ive ( g , ps )
return reach and e x c l

def proce s s_reach_po l i cy_f i l e ( g , f i l e ) :
def proce s s ( l ) :

i f l . s t a r t s w i t h ( ’ never ’ ) :
return reach_never_pol icy ( g , parse_never_pol icy ( l ) )
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i f l . s t a r t s w i t h ( ’ only ’ ) :
return reach_only_pol icy ( g , parse_only_pol icy ( l ) )

raise Exception ( ’ unsupported p o l i c y : ’ + l )

return a l l (map(lambda x : p roce s s ( x . s t r i p ( ) ) , open ( f i l e ) .←↩
r e a d l i n e s ( ) ) )

def reach_query (g , q ) :
( s , d , p1 , p2 , pr ) = q
i f p2 i s None :

p2 = p1

for e in get_rel_edges ( g , s , d ) :
p1_ , p2_ , proto = parse_edge_label ( e [ 2 ] [ ’ l a b e l ’ ] )
i f ( pr == ’ any ’ or pr == proto ) and ( p1 == ’ any ’ or (p1_←↩

<= i n t ( p1 ) and
i n t ( p2 ) <= p2_) ) :
return True

return False

def parse_reach_query ( q ) :
return _reach_parse ( q )

def process_reach_query_f i l e ( g , f i l e ) :
for l in open ( f i l e ) . r e a d l i n e s ( ) :

print l , ’=>’ , reach_query (g , parse_reach_query ( l ) )

#
# Attack Graph Query and Po l i cy Process ing
#

def _attack_parse (q , p r e f i x=’ ’ ) :
# TODO: f i x space s e n s i t i v i t y
r = p r e f i x + ’ from (?P<src >.+) to (?P<dst >.+) vuln (?P<vuln←↩

>.+) ’
m = re . match ( r , q )
i f m i s None :

raise Exception ( ’ parse e r r o r in : ’ + q )
return m. groups ( )

# f i n d the weakest path f o r query ’ q ’
def attack_weakest_path (g , q ) :

def rate2we ight ( r ) :
d = { ’ high ’ : 1 , ’medium ’ : 2 , ’ low ’ : 3}
return d [ r . lower ( ) ]

def rate2num ( r ) :
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d = { ’ high ’ : 3 , ’medium ’ : 2 , ’ low ’ : 1}
return d [ r . lower ( ) ]

def is_wrong_loop (k , v , l oops ) :
return l en ( v ) == 1 and k == v [ 0 ] and not k in l oops

( s , d , v ) = q

g_ = g . copy ( )

# Set edge we igh t based on v u l n e r a b i l i t y r a t i n g
# Remove edges wi th too low vu ln r a t i n g regard ing query
for e in g_ . edges ( data=True ) :

r = e [ 2 ] [ ’ r a t e ’ ]
i f v <> ’ any ’ and rate2num ( r ) < rate2num ( v ) :

g_ . remove_edge ( e [ 0 ] , e [ 1 ] )
continue

e [ 2 ] [ ’ weight ’ ] = rate2we ight ( r )

l oops = g_ . nodes_with_se l f loops ( )

i f s <> ’ any ’ :
# Find a l l nodes supe r s e t o f s
s s = f i l t e r (lambda x : is_src_subeq ( s , x ) , g_ . nodes_iter←↩

( ) )
ps = [ ]
for s in s s :

i f d <> ’ any ’ :
try :

ps . append ( nx . d i jks t ra_path (g_ , s , d ) )
except nx . except ion . NetworkXError :

continue
else :

# f i l t e r loop paths
ps . extend ( [ v for (k , v ) in nx .←↩

s ing le_source_di jks t ra_path (g_ , s ) .←↩
i t e r i t e m s ( ) \

i f not is_wrong_loop (k , v , l oops ) ] )
return ps

else :
i f d <> ’ any ’ :

# Sta r t D i j k s t r a from d e s t i n a t i o n node in reve r s ed ←↩
graph

g_ . r e v e r s e ( copy=False )
return [ v [ : : − 1 ]

for (k , v ) in nx . s ing le_source_di jks t ra_path←↩
(g_ , d) . i t e r i t e m s ( ) \

i f not is_wrong_loop (k , v , l oops ) ]
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else :
# Al l pa i r s d i j k s t r a
return [ v_

for (k , v ) in nx . a l l_pa i r s_di jks t ra_path (g_←↩
) . i t e r i t e m s ( ) \

for (k_, v_) in v . i t e r i t e m s ( ) \
i f not ( is_wrong_loop (k_, v_, loops ) and k ←↩

== k_) ]

# check i f any path e x i s t f o r query ’ q ’
def attack_query (g , q ) :

try :
p = attack_weakest_path (g , q )

except KeyError as e :
print ’ unknown node in query : ’ , e
return False

print p
return l en (p) > 0

def parse_attack_query ( q ) :
return _attack_parse ( q )

def process_attack_query_f i l e ( g , f i l e ) :
for l in open ( f i l e ) . r e a d l i n e s ( ) :

print l , ’=>’ , attack_query (g , parse_attack_query ( l ) )

def parse_attack_pol icy (p) :
i = p . f i n d ( ’ from ’ )
return _attack_parse (p [ i : ] )

def attack_only_pol icy ( g , p ) :
( s , d , v ) = p
# any path f o r v+1?, i f v == high /any −> true
i f v == ’ high ’ or v == ’ any ’ :

return True
i f v == ’ low ’ :

return attack_never_pol icy ( g , ( s , d , ’medium ’ ) )
i f v == ’medium ’ :

return attack_never_pol icy ( g , ( s , d , ’ high ’ ) )
raise Exception ( ’ unsupported vuln : ’ + v )

def attack_never_pol icy ( g , p ) :
# No a t t a c k path
a = attack_weakest_path (g , p)
i f l en ( a ) > 0 :

print ’ p o l i c y ’ , p , ’ v i o l a t i o n : ’ , a
else :

return True
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def proce s s_at tack_po l i cy_f i l e ( g , f i l e ) :
def proce s s ( l ) :

i f l . s t a r t s w i t h ( ’ never ’ ) :
return attack_never_pol icy ( g , parse_attack_pol icy ( l←↩

) )
i f l . s t a r t s w i t h ( ’ only ’ ) :

return attack_only_pol icy ( g , parse_attack_pol icy ( l )←↩
)

raise Exception ( ’ unsupported p o l i c y : ’ + l )

return a l l (map(lambda x : p roce s s ( x . s t r i p ( ) ) , open ( f i l e ) .←↩
r e a d l i n e s ( ) ) )

# cons t ruc t t e s t a t t a c k graph
def test_ag ( ) :

g = nx . MultiDiGraph ( )
i = ’ 0 . 0 . 0 . 0 / 0 ’
c = ’ 1 . 2 . 3 . 4 / 2 4 ’
a = [ ’AMI0 ’ , ’AMI1 ’ , ’AMI2 ’ , ’AMI3 ’ , ’AMI4 ’ ]
g . add_nodes_from ( [ i , c ] + a [ 1 : ] )
g . add_edges_from ( [ ( i , a [ 1 ] , { ’ r a t e ’ : ’ low ’ }) ,

( i , a [ 1 ] , { ’ r a t e ’ : ’medium ’ }) ,
( a [ 1 ] , a [ 2 ] , { ’ r a t e ’ : ’medium ’ }) , ( a [ 2 ] , a [ 4 ] , { ’ r a t e ’ :←↩

’medium ’ }) ,
( a [ 2 ] , a [ 3 ] , { ’ r a t e ’ : ’ low ’ }) , ( c , a [ 1 ] , { ’ r a t e ’ : ’ low ’←↩

}) ,
( c , a [ 2 ] , { ’ r a t e ’ : ’ high ’ }) , ( c , a [ 3 ] , { ’ r a t e ’ : ’ low ’ })←↩

,
( c , a [ 4 ] , { ’ r a t e ’ : ’ low ’ })
] )

for ( s , t , d ) in g . edges_i te r ( data=True ) :
d [ ’ l a b e l ’ ] = d [ ’ r a t e ’ ]

return g

def main ( ) :
global c o n f i g
c o n f i g = Conf igParser . Conf igParser ( )
c o n f i g . read ( ’ s ave ly . c f g ’ )
akey = c o n f i g . get ( ’AWS’ , ’ a c c e s s ’ )
skey = c o n f i g . get ( ’AWS’ , ’ s e c r e t ’ )
conn = EC2Connection ( akey , skey )

global aws_conn
aws_conn = conn

# SG R e a c h a b i l i t y Graph
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sg s = conn . get_al l_secur i ty_groups ( )
rg = build_sg_reach ( sgs )
visual_graph ( rg , ’ reach . png ’ )

process_reach_query_f i l e ( rg , ’ q u e r i e s ’ )
print ’ Reachab i l i t y Po l i cy v a l i d : ’ , \

p roce s s_reach_po l i cy_f i l e ( rg , ’ p o l i c i e s ’ )

# AMI−SG Graph
r e s = conn . ge t_a l l_ ins tance s ( )
arg = build_sg_ami ( sgs , r e s )
visual_graph ( arg , ’ ami . png ’ )

# Attack Graph
ag = bui ld_attack ( sgs , r e s )
#ag = tes t_ag ()
visual_graph ( ag , ’ a t tack . png ’ )

process_attack_query_f i l e ( ag , ’ que r i e s 2 ’ )
print ’ Attack Po l i cy v a l i d : ’ , p roce s s_at tack_po l i cy_f i l e ( ag←↩

, ’ p o l i c i e s 2 ’ )

i f __name__ == ’__main__ ’ :
main ( )

Listing D.1: SAVEly Python Implementation
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