
A Structured Semantic Domain for Smart Contracts
Extended Abstract

Sören Bleikertz, Andreas Lochbihler, Ognjen Marić, Simon Meier, Matthias Schmalz, Ratko G. Veprek
Digital Asset (Switzerland) GmbH, Zurich, Switzerland
firstname.lastname@digitalasset.com

Smart contract languages provide a new paradigm for cod-
ing business workflows that span multiple untrusted actors.
Their semantics are given in terms of transactions, updates
to a model of a ledger that is shared between the actors. A
distributed system then implements this semantic model and
provides users with the distributed ledger. Most models follow
the ideas of Bitcoin [5] or Ethereum [6]. In Bitcoin, a transac-
tion is described by two sets: the spent immutable coin inputs
and the produced immutable coin outputs; the ledger state
consists of the unspent outputs (UTXOs). In Ethereum, the
ledger state, so-called “world state”, maps addresses to values,
and transactions mutate this mapping. Both approaches suffer
from confidentiality, privacy, and scalability issues [2], [3].

In this abstract, we sketch how adding more structure to
the semantic domain yields a more secure programming model
for smart contracts, and allows for distributed implementations
with better confidentiality, privacy, and scalability properties.

We identify five distributed ledger desiderata that the UTXO
and world state models lack. They are motivated by typical use
cases for smart contract platforms like trading assets between
multiple actors, e.g., a delivery-versus-payment (DvP) swap
in a financial market. Here, Alice transfers an asset A to Bob
and Bob transfers an asset B to Alice. The desiderata are:

a) Compositionality: Small ledger updates should be
composable into larger updates. For example, given an update
for transferring an asset from the owner to another party, we
can combine two of them into a DvP update. The composition
must be atomic: one asset is transferred if and only if the other
asset is transferred. Lack of atomicity is a systemic problem
for conventional financial systems: when Bob defaults between
the two transfers, Alice has already given up her asset without
getting anything in return. Intermediaries can take over this
risk, but Alice and Bob must trust them to correctly execute
the swap on their behalf and to not default while doing so.

b) Authorization: As the ledger is shared between un-
trusted actors, every ledger update must be properly autho-
rized. For example, an asset owner must authorize the transfer
to another party, and both parties must have agreed to the DvP
swap. For compositionality, authorization should support dele-
gation of rights. As part of a DvP contract, e.g., Alice can del-
egate to Bob her right to transfer her asset to Bob, so that Bob
can execute the swap without involving Alice. When the digital
assets represent off-ledger obligations, authorization is crucial
in ensuring that these obligations are entered into voluntarily.

c) Confidentiality: As ledger updates may contain
sensitive data such as trade secrets and GDPR-relevant data,

they should only be visible to the parties that have a stake in
it. For example, an unrelated third party Eve should not learn
which assets were exchanged in a swap between Alice and
Bob. Ideally, confidentiality can be maintained at the level of
sub-updates. That is, if ownership of Alice’s asset is tracked
by the registry R, then R should be involved only in the
transfer of Alice’s asset. In particular, R should not learn what
is exchanged in the other leg, i.e., what Alice gets in return.

d) Privacy: Not only must the business details remain
confidential. Also the parties involved in one sub-update
should remain hidden from parties involved only in unrelated
sub-updates. For example, the registry R need not learn who
is the registry in the other leg.

e) Scalability: Scaling needs sharding and parallel pro-
cessing. A ledger based on a global shared state limits scaling.

Contributions. We propose a new semantic domain [4] for
distributed ledgers that achieve all of the above desiderata. At
its core are a hierarchical transaction structure and a notion of
data and action ownership. The transaction structure is given
by the following Haskell types, where we leave abstract the
types Party for parties and Contract for smart contracts.

data Action
= Create Contract
| Exercise [Party] Contract Kind Transaction
| Fetch [Party] Contract

data Kind = Consuming | Nonconsuming
type Transaction = [Action]
type Update = ([Party], Transaction)
type Ledger = [Update]

The basic building block Action captures a ledger change.
There are three kinds: First, Create creates a smart contract.
Second, Exercise records that the given parties, called the
actors, have exercised a right on the given contract. The Kind

determines whether the Exercise consumes the contract;
consumed contracts cannot be used afterwards. The last ar-
gument describes the consequences of the exercise as a sub-
transaction, i.e., a list of actions. Third, Fetch checks whether
the contract is active, i.e., it has been created and not yet
consumed; the parties are the actors that authorize the check.

An Update consists of the requesting parties and the actual
(atomic) change as an Action list. A Ledger lists Updates.

Semantically, a smart contract is modelled by (1) a predicate
valid, which determines whether an action on the contract
is valid, and (2) sets of contract signatories and observers.
Signatories “own” the contract data and are bound by the



contract. Signatories and observers are privy to actions on the
contract. Contracts are immutable like in the UTXO model. So
when the details of a smart contract should be modified, e.g.,
the owner in a contract modelling asset ownership, the contract
is consumed in an Exercise action whose consequence
creates the updated instance as a new contract.

The structured ledger updates allow us to express and reason
about security properties like authorization, confidentiality, and
privacy within our model. Reflecting this model in our smart
contract language DAML (https://www.daml.com) is how we
achieve the stated desiderata.

The hierarchical structure of actions gives us composition-
ality, as transactions are atomic. An asset transfer from Alice
to Bob, e.g., is expressed by Exercise [Alice] asset

Consuming [Create ...], where . . . describes the creation
of an asset contract for the owner Bob. This action can be one
of the consequences of an Exercise on a DvP contract.

Authorization is achieved as follows. Every Exercise

and Fetch action must be authorized by its actors. Every
Create action must be authorized by its signatories. An
update is authorized by the parties requesting it. Furthermore,
a consequence of an Exercise is jointly authorized by the
actors together with the signatories of the exercised contract.
This authorization rule enables delegation.

Confidentiality and privacy are captured by projections,
which determine which parts of a ledger update a party may
see. Roughly speaking, projecting an action to a party yields
the list of subactions where the party is an actor or a signatory
or observer of the affected contract. So if a party does not
appear in a ledger update, then it sees nothing of the update.
And if it is involved only in a few subactions, then it sees only
those subactions and their children. This enables scaling, as a
party does not store or process data that it does not see, but
disallows a few use cases, e.g., bearer tokens.

This ledger model is not only theoretical. The semantics of
our programming language DAML are defined in terms of
this model. The Australian Stock Exchange is set to deploy a
DAML implementation of trade clearing and settlement (C&S)
to production in 2021 [1]; C&S is a core part of the stock
exchange business. Furthermore, we have designed and are
implementing a synchronization protocol, CANTON, which
implements this ledger as a scalable distributed system.

In CANTON, parties deploy CANTON participants (Fig. 1).
Participants run the CANTON protocol and communicate via
synchronization domains, which order messages. A participant
can connect to multiple domains simultaneously, and processes
messages from different domains in parallel. A ledger update
can be processed whenever all involved participants are con-
nected to some joint domain. CANTON ensures the integrity
of the shared ledger, defined as follows: (1) every contract is
created at most once; (2) all contract are active when fetched
or exercised (to prevent double spends); (3) all ledger actions
satisfy valid; and (4) all actions are authorized. To achieve
integrity, confidentiality, and privacy simultaneously, CANTON
relies on the following fundamental property of our model,
which holds under mild conditions on the predicate valid.

Participant 1 Participant 2

Participant 3 Participant 4

Domain 1 Domain 2 Domain 3

Virtual Global Ledger
Party 1 Party 2

Party 3

Fig. 1. The CANTON architecture

Distributed Ledger Propertyx A ledger satisfies integrity iff
the projections to each party do so.

This property enables CANTON participants to perform the
integrity checks only on their projections of an update, and yet
achieve integrity for the shared ledger. Stating the achieved
integrity property is not trivial, as we allow both honest
and Byzantine participants. The formulation is as follows:
CANTON ensures that there exists a shared ledger that satisfies
integrity, such that its projection to each honest participant
(i.e., their party) consists exactly of the ledger updates which
have passed the participant’s local checks. CANTON achieves
this property under the following modest trust assumptions:

• The domain correctly implements total-order multicast
for messages sent over the domain.

• A special entity in the domain, the mediator, correctly
aggregates the outcomes of the participant’s local checks,
like a coordinator in a two-phase commit. It hides the
participant’s identities and thereby ensures privacy.

The actual ledger updates are encrypted so that the domain en-
tities cannot see the contents. Moreover, every non-liveness vi-
olation of integrity can be attributed to dishonesty or faultiness.

We have formalized our semantic domain and the distributed
ledger property in the proof assistant Isabelle/HOL. Now,
we are working on formally verifying CANTON’s integrity
guarantees using Isabelle/HOL.

Acknowledgements: We thank all current and former Dig-
ital Asset employees who worked on DAML and CANTON.
The authors are listed alphabetically.

REFERENCES

[1] ASX Chess Replacement. https://www.asx.com.au/services/
chess-replacement.htm, version 2019-04-29.

[2] N. Atzei, M. Bartoletti, and T. Cimoli. A survey of attacks on Ethereum
smart contracts (SoK). In POST 2017, pages 164–186. Springer, 2017.

[3] M. Conti, E. S. Kumar, C. Lal, and S. Ruj. A survey on security and
privacy issues of Bitcoin. IEEE Commun. Surveys Tuts., 20(4):3416–
3452, 2018.

[4] DA ledger model. https://docs.daml.com/concepts/ledger-model/index.
html, version 2019-04-16, 2019.

[5] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https:
//bitcoin.org/bitcoin.pdf, 2008.

[6] G. Wood. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper, 151:1–32, 2014.

https://www.daml.com
https://www.asx.com.au/services/chess-replacement.htm
https://www.asx.com.au/services/chess-replacement.htm
https://docs.daml.com/concepts/ledger-model/index.html
https://docs.daml.com/concepts/ledger-model/index.html
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

	References

