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Abstract

Virtualization enables the increasing efficiency and elasticity of modern IT infrastructures, including
Infrastructure as a Service. However, the operational complexity of virtualized infrastructures is high,
due to their dynamics, multi-tenancy, and size. Misconfigurations and insider attacks carry significant
operational and security risks, such as breaches in tenant isolation, which put both the infrastructure
provider and tenants at risk.

In this thesis we study the question if it is possible to model and analyze complex, scalable, and dynamic
virtualized infrastructures with regard to user-defined security and operational policies in an automated
way. We establish a new practical and automated security analysis framework for virtualized infras-
tructures. First, we propose a novel tool that automatically extracts the configuration of heterogeneous
environments and builds up a unified graph model of the configuration and topology. The tool is fur-
ther extended with a monitoring component and a set of algorithms that translates system changes to
graph model changes. The benefits of maintaining such a dynamic model are time reduction for model
population and closing the gap for transient security violations.

Our analysis is the first that lifts static information flow analysis to the entire virtualized infrastructure,
in order to detect isolation failures between tenants on all resources. The analysis is configurable using
customized rules to reflect the different trust assumptions of the users. We apply and evaluate our analysis
system on the production infrastructure of a global financial institution. For the information flow analysis
of dynamic infrastructures we propose the concept of dynamic rule-based information flow graphs and
develop a set of algorithms that maintain such information flow graphs for dynamic system models.

We generalize the analysis of isolation properties and establish a new generic analysis platform for
virtualized infrastructures that allows to express a diverse set of security and operational policies in a
formal language. The policy requirements are studied in a case-study with a cloud service provider. We
are the first to employ a variety of theorem provers and model checkers to verify the state of a virtualized
infrastructure against its policies. Additionally, we analyze dynamic behavior such as VM migrations.
For the analysis of dynamic infrastructures we pursue both a reactive as well as a proactive approach. A
reactive analysis system is developed that reduces the time between system change and analysis result.
The system monitors the infrastructure for changes and employs dynamic information flow graphs to
verify, for instance, tenant isolation. For the proactive analysis we propose a new model, the Operations
Transition Model, which captures the changes of operations in the virtualized infrastructure as graph
transformations. We build a novel analysis system using this model that performs automated run-time
analysis of operations and also offers change planning. The operations transition model forms the basis
for further research in model checking of virtualized infrastructures.







Zusammenfassung

Virtualisierung ermoglicht eine hohere Effizienz und Elastizitdt von modernen IT Infrastrukturen, ein-
schlief3lich Infrastructure as a Service. Jedoch ist die operationale Komplexitit von virtualisierten Infra-
strukturen aufgrund ihrer Dynamik, “Multi-Tenancy” und ihrer Grol3e sehr hoch. Fehlkonfigurationen
und Angriffe von Insidern tragen zu erheblichen operationalen und Sicherheitsrisiken bei. Beispielsweise
fithren Verletzungen in der Tenant-Isolierung zu Risiken sowohl fiir den Infrastrukturbetreiber als auch
fiir den Nutzer.

In dieser Dissertation untersuchen wir die Frage, ob es moglich ist komplexe, skalierbare und dynamische
virtualisierte Umgebungen zu modellieren und hinsichtlich benutzerdefinierter operationaler und sicher-
heitsrelevanter Richtlinien in einem automatischen Verfahren zu iiberpriifen. Wir etablieren ein neues
praktisches und automatisches Framework fiir die Sicherheitsanalysen von virtualisierten Infrastrukturen.
Zuerst stellen wir ein System vor, welches die Konfiguration von heterogenen Umgebungen automatisch
extrahieren kann und ein einheitliches Graphenmodell der Konfiguration und der Topologie aufbaut.
Zusitzlich wird das System mit einer Komponente zur Uberwachung der Umgebung sowie Algorithmen
ausgebaut, welche es erlauben, Anderungen in der Umgebung in Anderungen im Graphenmodell zu iiber-
setzen. Die Vorteile eines solchen dynamischen Modells sind zum einen Zeiteinsparungen im Aufbau des
Modells, als auch das Schliessen der Liicke im Erkennen von voriibergehenden Sicherheitsverletzungen.
Unsere Analyse ist die erste, welche statische Informationsflussanalyse auf die gesamte virtualisierte
Umgebung iibertragt, somit konnen Verletzungen in der Tenant-Isolierung in allen Ressourcen entdeckt
werden. Die Analyse ist mittels benutzerdefinierter Regeln konfigurierbar, welche die unterschiedli-
chen Sicherheitsannahmen der Benutzer widerspiegeln. Wir verwenden und evaluieren unser System
in der Produktionsumgebung eines globalen Finanzinstitutes. Im Rahmen der Informationsflussanalyse
von dynamischen Infrastrukturen stellen wir das Konzept der dynamischen, regelbasierten Informa-
tionsflussgraphen vor und entwickeln Algorithmen, welche Informationsflussgraphen fiir dynamische
Systemmodelle verwalten.

Wir generalisieren die Analyse von Isolationseigenschaften und etablieren eine generische Analyseplatt-
form fiir virtualisierte Infrastrukturen, welche es erlaubt eine breite Menge von operationalen und
sicherheitsrelevanten Richtlinien in einer formalen Sprache auszudriicken. Die Anforderungen an die aus-
zudriickenden Richtlinien werden in einer Fallstudie mit einem Cloud-Provider untersucht. Erstmals wird
eine Reihe von etablierten automatischen Theorembeweisern sowie Modellpriifern fiir die Analyse von
virtualisierten Infrastrukturen gegentiber spezifizierten Richtlinien angewendet. Auf3erdem iiberpriifen
wir dynamisches Verhalten, wie zum Beispiel die Migration von VMs.

Im Falle der Analyse von dynamischen Infrastrukturen verfolgen wir sowohl einen reaktiven als auch einen
proaktiven Ansatz. Unser neu entwickeltes reaktives Analysesystem reduziert die Zeit zwischen Systemén-
derung und Analyseergebnis. Das System iiberwacht die Infrastruktur auf Anderungen und verwendet
einen dynamischen Informationsflussgraphen unter anderem zur Uberpriifung von Tenant-Isolierung. Im
Rahmen des proaktiven Ansatzes entsteht ein neuartiges Modell, das Operations Transition Model, welches
durch Operationen verursachte Anderungen in virtualisierten Infrastrukturen mittels Graphtransformatio-
nen abbildet. Ein neues auf dem Modell aufbauendes Analysesystem iiberpriift automatisch Operationen
zur Laufzeit und erméglicht es auBBerdem, Anderungen in virtualisierten Umgebungen zu planen. Das
Operations Transition Model bildet die Basis fiir weitere Forschungen im Bereich der Modelliiberpriifung
von virtualisierten Infrastrukturen.
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1 Introduction

The use of virtualization in IT infrastructures has seen a remarkable growth over the last decade.
Technically, virtualization enables the sharing of physical resources by providing virtual resources on
top of them. The economic drivers behind the adoption of virtualization are higher efficiency, due to
consolidation, increased utilization, which leads to cost savings, as well as more flexibility and agility. In
fact, virtualized IT infrastructures are the foundation of the increasingly popular Cloud Computing, a new
service delivery model that promises, among other benefits, a rapid provisioning of computing resources.
Start-ups, SMEs, large enterprises, and governments all alike adopt virtualization for its benefits. Start-
ups mainly leverage virtualization through the cloud computing paradigm where virtual resources are
offered by providers such as Amazon [Amal4b], IBM SoftLayer [Sof14], or RackSpace [Rac14]. Large
enterprises, on the other hand, tend to adopt virtualization for their internal IT infrastructure. For
instance, EMC [EMC10] and Accenture [Acc12] target or already achieved a virtualization rate of over
90% for their internal servers. IBM advises as best practice for modern data centers a rate of 60%+
for virtualized servers and 80-90% for storage virtualization [IBM12]. The US government, one of the
largest consumer of IT, uses both cloud computing as well as private virtualized infrastructures for their
benefits [Kun10]. Virtualization had and continues to have a major impact on the IT infrastructures of all
kinds of organizations, and changes how these infrastructures are operated and managed.

1.1 Motivation

Although virtualization and cloud computing offer many technical and economical benefits, a major
inhibitor in their adoption is security [MG09a]. Virtualized infrastructures have introduced new challenges
for the security management and operation compared to traditional physical infrastructures. Garfinkel et
al. [GRO5] have identified the following challenges.

Scaling: New virtual machines can be created rapidly, compared to long procurement and setup procedures
of physical servers. This results in a virtual machines (VMs) sprawl where the number of VMs can grow
at an explosive rate. Existing procedures for the security management and operation of physical servers
fail in this new environment and limited automation with manual intervention increases the risks of
misconfigurations and security failures.

Transience: The lifecycle of VMs is more dynamic compared to physical servers. As quickly as a VM is
created, it can also be suspended, shutdown, or destroyed. This behavior results in an environment that
is under constant change and where a steady state might not be reached. Static security mechanisms
fail in such dynamic environments and may miss transient security failures.

Mobility: In addition to the dynamic lifecycle, VMs may also migrate in the infrastructure between
different hosts. This VM mobility further contributes to the infrastructure dynamic behavior and
challenges existing security mechanisms. In particular, the source and destination hosts may belong to
different security perimeters or the migration itself can be attacked [OCJO8].

Identity: Methods that determine ownership of a machine in a static way, for instance, based on the MAC
address or Ethernet port, are not feasible anymore for virtualized infrastructure, because of dynamic
VM creation with random MAC address generation and VM mobility.

In summary, these challenges stem from two properties of virtualized infrastructures: scale and dynamics.
Security challenges at the infrastructure level concern the security administrators and operators of such
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environments. However, not only do the infrastructure operators face new security challenges, but also
the owners of virtual machines. Patch management is becoming more difficult due to branching and VM
snapshots, as well as due to a diverse set of operating systems and applications that are running in VMs.
Snapshots also impact the cryptographic randomness for applications in the VM, because reverting back to
a previous snapshot may lead to the same randomness being generated [RY10]. Further secure deletion
of data is a challenge as data must be deleted from all snapshots.

Infrastructure clouds, as part of cloud computing, delivers compute, network, and storage resources by
relying on virtualization. Therefore, the challenges of virtualized infrastructures remain also for cloud
computing, however also new challenges emerged due to its multi-tenancy and the outsourcing approach
in case of public clouds [MS10]. In fact, NIST [MGO09a] identified the following key issues in the security
of cloud computing: trust, multi-tenancy, encryption, and compliance. ENISA [ENI09] conducted a
risk assessment that further investigates security challenges in cloud computing. In addition, the Cloud
Security Alliance maintains a list of the top ten threats in cloud computing [CSA10, CSA13]. In the
following we aggregate, summarize, and discuss a subset of the major risks and threats of both the ENISA
and CSA reports.

Isolation Failure: Fundamental traits of infrastructure clouds are multi-tenancy and the sharing of re-
sources. However, physical resources were often not designed for sharing and ensuring proper isolation.
The resulting side-channels have been exploited for cloud computing environments that allowed to
extract both coarse- and fine-grained information, such as a cryptographic key, from another ten-
ant [RTSS09, ZJRR12]. Furthermore, the complexity of the virtualization layer itself, namely the
hypervisor, resulted in software vulnerabilities that can be exploited from a virtual machine, resulting
in privilege escalation and isolation failures [Orm07]. Finally, a misconfiguration in the virtualization
layer of compute, network, or storage may tear down the isolation of tenants. The Cloud Security
Alliance [CSA13] states that “The key is that a single vulnerability or misconfiguration can lead to a
compromise across an entire provider’s cloud.”. They propose strong compartmentalization, monitoring
for unauthorized changes, and configuration audits as suitable remediation steps.

Malicious Insider: High-privileged individuals, such as the system administrators of the cloud provider,
pose a significant risk as they can cause damage on a large scale. For example, an administrator
can dump the memory content of a tenant’s VM and with that all sensitive information contained
therein [RC11]. The insider threat is well known in organizational security, but its impact is amplified in
public clouds as many customers converge under a single management domain. According to [Olt13],
36% of the surveyed enterprises state that the growing usage of cloud computing makes the detection
and prevention of insider threats more difficult. With regard to the mitigation of insider threats in
public cloud environments, the lack of transparency renders an assessment of the provider’s security
processes by a cloud customer almost impossible.

Compliance Risks and Insufficient Transparency: For certain types of customers it is mandatory that the
cloud infrastructure and the provider meets relevant industry standards and regulatory requirements,
such as PCI-DSS for the financial industry. However auditability is often limited and the internal
configuration and security processes are not assessable. Providers are reluctant to disclose infrastructure
details and do not offer mechanisms to monitor the security of the infrastructure. In addition, cloud
customers tend to rush too fast in adopting cloud computing without performing sufficient due diligence
in terms of risk and security assessment, thereby dealing with unknown risks.

Data Protection: Loss, leakage, or breach of data is a major concern of cloud customers. The root causes
can be operational failures, such as faulty storage management, side-channel attacks, or application
vulnerabilities, e.g., in a multi-tenant database service. System administrators may maliciously or
accidentally delete storage volumes of tenants, or a volume is attached to the wrong customer’s VM.
From a jurisdictional side in terms of data protection laws, requirements regarding the location of the
stored and/or processed data are important to both cloud providers and customers.
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Other risks also include the loss of governance and vendor lock-in, the abuse of cloud services, as well as
the compromise of the management interface and hijacking of accounts. In summary, cloud computing is
challenged by a wide variety of security issues ranging from technical isolation failures, malicious insiders,
to compliance and jurisdictional challenges. We will further investigate isolation failures with its potential
root causes of misconfigurations, insider attacks, and vulnerabilities.

1.1.1 Isolation Failures in Multi-Tenant Infrastructures

Operating multi-tenant infrastructures, where multiple tenants share the same physical resources, is
economically crucial for achieving high utilization. However, isolation of tenants is a critical security
requirement in multi-tenant virtualized infrastructures. In enterprise deployments, the tenants often
represent different business units, security levels, or application life-cycles. In public virtualized infras-
tructures as offered by a cloud provider the tenants are in fact different customers, including conflicting
organizations and potential malicious ones.

We conducted a survey among IBM’s top clients in November 2011, in order to investigate their use of
virtualized infrastructures and their requirement of isolation. In this survey, 22 representatives from 14
companies participated with a majority of the participants having the role of system administrator or
infrastructure architect. The participants had to select a single answer for each question. The survey
covered the areas of automation, how and what is isolated, as well as the means and importance of
verifying the isolation. In the following we highlight the results of the poll, with percentages given on the
number of participants that selected a specific answer.

* Deployment Automation: 20% manual, 56% partially automated with manual intervention, 24%
fully automated.

* Isolation Groups: 71% based on lifecycle (development, test, production), 25% by clients or
compliance related, 4% by data content.

* Isolation Methods: 28% VLANs and firewalls, 12% physical separation, 4% only firewalls, 56% a
combination of physical, VLAN, and firewalls.

* Isolation Verification: 46% manual process, 36% no process at all, 18% automated system.

* Importance of Isolation Verification: 40% very important, 40% moderately important, 15% less
important, 5% not important.

The survey suggests that while isolation is heavily used in virtualized infrastructures, the understanding
and verification of isolation properties is a manual process or largely missing, despite its importance.
Manual intervention in the deployment processes makes a majority of the infrastructures vulnerable to
misconfigurations and increases the risk of insider attacks. Even though a fully automated deployment
may lower these risks, it will not entirely solve the problem due to software bugs or misconfigurations in
the automation software itself [Opel4a, Opel4b].

The causes for isolation failures in virtualized infrastructures can be manifold. Chen et al. [CPK10]
observe that “As we begin to understand problems in isolation, we should also start to put together an
understanding of how different issues and threats combine.”. Indeed, misconfigurations due to complex
and heterogeneous environments, insider attacks, as well as software and hardware vulnerabilities may
contribute to isolation failures.

Misconfigurations
Configuration errors have been a major cause for the disruption and failure of IT services in the past [Gra85,
OGPO03, HB09]. Unsurprisingly, virtualized and cloud infrastructure suffer from similar problems. In
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particular in large public clouds, misconfigurations will have a major impact since potentially hundreds of
thousands of customers may be affected [Amal1l, Mic12].

In a virtualized infrastructure we can attribute misconfigurations to its heterogeneity and complexity,
as well as to its dynamics and scale. Berger et al. [BCPT08] observe that the security management of a
networked server running a single workload is already a complex task, and the complexity is amplified
when multiple workloads of different tenants are considered. In addition, the virtual machines, their
lifecycle and resource assignments have to be considered in the overall security management [FSO8].
From private communication with practitioners of virtualized infrastructure deployments we learned
that misconfigurations of the virtual network, in particular wrong VLAN identifiers, are a major problem.
Administrators often do not understand the entire architecture and make wrong selections of VLAN
identifiers. Given the importance of isolation provided by VLANs [VMw09], such misconfigurations may
lead to significant security failures due to isolation breaches.

Malicious Insiders

The threat of malicious insiders in organizations is not a new phenomena that emerges in cloud computing,
but the threat is amplified due to the disappearance of physical boundaries, which makes it hard to define
a security perimeter that divides insiders from outsiders [HNB11].

Claycomb and Nicoll studied the threat of insiders in cloud computing [CN12]. They differentiate between
three different kind of insiders. The first kind is a rogue administrator that is financially motivated and
tries to steal sensitive information, as well as one that tries to sabotage the provider’s IT infrastructure to
harm the provider’s reputation. An administrator may work on different layers that include the hosting
company’s infrastructure, the virtual machine images, the virtual machine system, and applications. From
a cloud provider perspective the rogue administrator of the infrastructure is a pressing one, since they are
usually highly privileged and put both the data of its tenants as well as the provider’s reputation at risk.
The other two kinds are insiders that make use of the cloud to launch an attack, such as a denial of service
or password cracking, and insiders of the cloud customer organization, who try to exploit vulnerabilities
in the organization’s use of cloud computing.

Various attacks have been presented that a rogue cloud provider administrator could mount to violate
isolation properties and steal sensitive information. Rocha et al. [RC11] present attacks which dump the
memory of a virtual machine, including all sensitive information that are currently contained therein, or
inspect the virtual storage volume for data at rest. Further, attacks on the VM mobility have been shown
that extract information while the VM is migrating over an insecure network or even manipulating the
VM while in transit to place a backdoor [OCJ08, DGCQ13].

A thin line exists between configuration changes that are accidental and ones that are malicious. A
malicious cloud administrator may misconfigure the virtual network, attach a wrong storage volume to a
VM, or co-locate VMs of different tenants, in order to allow an attacker to steal sensitive information from
a cloud consumer. An administrator could also be the subject of a social engineering attack where the
administrator unintentionally contribute to an attack.

Hardware and Software Vulnerabilities

Isolation failures may also stem from vulnerabilities in the hardware or software that is used within a
virtualized infrastructure. Physical resources are often shared among multiple tenants, although they were
never designed to be shared among mutually untrusted parties. The result are side-channel attacks that
may leak information, for instance using CPU caches [Per05, Aci07, AKS07]. Of course these side-channel
attacks have also been studied in the context of virtualized and cloud infrastructures [RTSS09, ZJRR12].
The ability of co-locating the VMs of the attacker with the ones of the victim is a necessary requirement
for a successful attack.

Software vulnerabilities contribute further to potential isolation failures. Exploiting a vulnerability in
the hypervisor from a guest VM may lead to a privilege escalation and the failure of VM isolation. Such
vulnerabilities have been studied in the literature [Orm07, PLS*14]. Practitioners of cloud deployments
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often have security policies in place that restrict the co-location of different tenants to a specific subset of
trusted hypervisors, or disallow co-location entirely.

1.1.2 Further Security and Operational Requirements

Isolation is an important goal, isolation failures a major risk, and one of the focusing security aspects of
this dissertation. However, accidental or malicious configuration and topology changes may also result in
other security and operational failures [OGP03].

The placement of virtual machines on particular physical servers is a requirement that is motivated by
performance, legal, or also security reasons. For example due to data privacy reasons, VMs may only run
on hosts of a certain geographic location [ENIO9]. Creating new virtual machines on the wrong servers
or migrating an existing VM to the wrong server may cause violations with regard to the placement
policy. Of security concern is also the VM migration process itself. An attacker may manipulate data in
transit if they have access to the network [OCJ08], or a VM is migrated to a host that is controlled by the
attacker [RC11].

For VM that host dependent services we want to make sure that these VMs can actually communicate with
each other, e.g., they are connected on the network level and they are powered on. This is complementary
to the isolation policy. Motivated by service dependability is also the absence of single point of failures,
i.e., to offer sufficient redundancy [LDL*08]. For instance two replicated services are running on the
same physical server [PZH13], which constitutes a single point of failure, or the network connectivity of
the host is only realized through one network uplink. For even stronger failure resilience properties we
want to make sure that replicated services are running on two different hypervisors, in order to minimize
the impact of bugs in a particular hypervisor and to achieve independent faults. Similarly, services can be
deployed on multiple independent clouds [Vuk10, BCQ*13] in order to achieve independent faults.

1.1.3 Problem Statement and Summary

Many different security challenges for both virtualized and cloud infrastructures are discussed in the
existing literature. One important challenge are isolation failures in multi-tenant environments, which are
caused by misconfigurations, malicious insiders, or system vulnerabilities. The complexity, heterogeneity,
scalability and dynamics of virtualized infrastructures contribute to the root causes of isolation failures.
In summary, the following problem has been identified:

Problem 1. Complex, scalable, and dynamic virtualized infrastructures suffer from misconfigurations,
malicious insiders, and system vulnerabilities that ultimately lead to security and operational failures, such as
isolation breaches.

This problem has been addressed in “traditional” IT infrastructures — at best — through the means of
change planning and assessments of the networking infrastructure configuration. However, these methods
only partially address the problem in a virtualized environment. Change planning does not cope with the
dynamic nature of the infrastructure. Assessment of the network covers only one part of the virtualized
infrastructure stack, which is composed out of network, compute, and storage.

If this problem remains unsolved, it is likely that both public cloud providers as well as enterprises will
see further security and operational failures in their virtualized infrastructures as they continue to expand
and increase in complexity. In fact, Chen et al. [CPK10] state that “Given the stakes, it strikes us as
inevitable that security will become a significant cloud computing business differentiator.”. Werner Vogels,
CTO of Amazon, confirms that security will always be their highest priority and their number-one area of
investments [MIT14a].
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1.2 Thesis

In light of the problem statement, I propose the following hypothesis:

Hypothesis 1. It is possible to model and analyze complex, scalable, and dynamic virtualized infrastructures
with regard to user-defined security and operational policies in an automated way.

I pursue the following research questions in order to validate the hypothesis:

Q1 How to model heterogeneous virtualized infrastructures with their configuration and topology? How
to populate such a model in an automated way?

Q2 What is a suitable isolation and information flow model? How to determine isolation among tenants
in the infrastructure?

Q3 How to express operational and security requirements? What requirements need to be expressed?
What kind of formal foundations are suitable that enable an automated analysis?

Q4 How to verify that the infrastructure — given as a model — fulfills the security requirements? What
are existing analysis tools? How suitable, expressive, and efficient are they?

Q5 How to cope with the infrastructure’s dynamic behavior? How can we keep the infrastructure model
up to date? Can we efficiently analyze changes happening in the infrastructure with regard to their
security impact?

Q6 Is it possible to prevent misconfigurations in the first place? How can we model configuration and
topology changes in a virtualized infrastructure? How can we analyze them?

1.3 High-Level Approach and Scope

The goal of this dissertation is to develop a practical analysis framework for virtualized infrastructures
that allows operators to express security and operational policies as well as to automatically analyze the
infrastructure with regard to these policies.

Our focus are virtualized infrastructures in the context of private enterprise deployments. The analysis of
public cloud infrastructures would be possible through a trusted third party, but is not the focus of this
dissertation. We want to provide tool support for operators to enable them in assessing and maintaining
the security of their infrastructure. The virtualized infrastructure comprises virtualized compute, network,
and storage resources. It is the fundamental layer of the cloud computing stack that includes Infrastructure
as a Service, which provides further automation on top of the virtualized infrastructure, as well as Platform
and Software as a Service. It is crucial to ensure the security compliance of the fundamental layer, in
order to provide a secure platform for the higher layers.

We consider both accidental as well as malicious configuration changes, thereby covering misconfigurations
as well as insider threats. We do not differentiate between human operators performing configuration
changes and agents, such as automation software, operating on the infrastructure.

Our analysis operates on a model of the infrastructure. The system capture both the current configuration
and topology of the infrastructure in a model, as well as the operations that can change the infrastructure.
This enables our analysis to assess the current and future states of the infrastructure. We cannot prove the
correctness of the model itself, but we establish a methodology for the model population. The system
extracts all the available configuration and topology data. For the data we explicitly decide which elements
to translate into the model and which elements to ignore. All elements that are not explicitly processed
result in a warning, which allow us to detect gaps in our model translation. For our operations model we
use the API documentation of operations as well as empirical validation to study the effect of operations.
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Our focus and scope is on the configuration and topology of compute, network, and storage resources. We
are excluding the modeling and analysis of access control configurations and policies. Further we exclude
software vulnerability analysis for both the hypervisor and virtual machines. The analysis operates on
both the current, although dynamic, state of the virtualized infrastructure as well as possible future
states. As future work we outline the analysis over sequences of states with temporal policies. We further
treat virtual machines as black boxes, i.e., we perform no introspection nor analysis on what is stored
or processed inside virtual machines. However, for many policies we require the operators to label and
assign the VMs to security zones.

We perform a static analysis, i.e., we analyze a virtualized infrastructure based on its configuration and
topology. For example, based on its configuration we compute potential information flows to determine
isolation failures. However, we do not monitor at runtime the infrastructure for actual flows. Therefore
our analysis bears similarity with static program analysis [NNH99], where the source code of a program is
statically analyzed rather than the executed program. However we note that our analysis is also dynamic
in the sense that when the infrastructure changes we also update our model and analysis. Our analysis
must cover both the current state of the infrastructure as well as actual and intended changes. This
means our analysis is event-driven and also tries to prevent misconfigurations in the first place. For the
analysis we employ both custom tools as well as existing tools from the formal methods community, such
as theorem provers and model checkers.

Our approach should not require modifications to existing virtualized infrastructures. Approaches such as
information flow control systems often require modifications to the operating system. We aim for a simple
deployment of our analysis framework in existing infrastructures. Furthermore, we aim for a framework
that is almost fully automated. This is necessary to cope with such scalable and dynamic environments
where we want to reduce the required involvement of human operators.

We evaluate the results of this approach through case studies in customer environments, with a laboratory
semi-production infrastructure, as well as with simulated environments for scalability evaluations.

1.4 Contributions

In this dissertation we establish a new practical and automated security analysis framework for virtualized
infrastructures. We propose a novel tool that automatically extracts the configuration of heterogeneous
environments, builds up a unified graph model, and maintains this model upon changes in the dynamic
environment. We are the first that lift static information flow analysis to the entire virtualized infrastruc-
ture, in order to detect isolation failures between tenants on all resources. Our analysis is configurable,
using customized rules to reflect the different trust assumptions of users, as well as dynamic to adjust
the information flow when the infrastructure changes. We propose a new generic analysis platform that
allows to express a diverse set of security and operational policies in a formal language. We are the first to
employ a variety of theorem provers and model checkers to verify the state of the virtualized infrastructure
against the policies as well as analyze dynamic behavior of the system, such as VM migrations. Finally, we
present a system for the run-time analysis of operations that can proactively mitigate misconfigurations
using an operations transition model.

Information Flow Analysis in Virtualized Infrastructures

We study the automated information flow analysis of scalable, heterogeneous, virtualized infrastructures.
We propose a novel tool that is capable of discovering and unifying the actual configuration of different
virtualization systems (Xen, VMware, KVM, and IBM’s PowerVM). Our approach transforms the discovered
configuration input into a graph model representing all resources, such as virtual machines, hypervisors,
physical machines, storage and network resources. Further, the tool performs a static information
flow analysis based on explicitly specified trust rules. We aim at reducing the analysis complexity for
human administrators to the specification of such a few well-designed trust assumptions and leave the
extrapolation of these assumptions and analysis of information flow behavior to the tools.
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In summary, our analysis tool models virtualized infrastructures faithfully, independent of their vendor,
and is efficient in terms of absence of false negatives as well as adjustable false positive rates. The analysis
takes a set of graph traversal rules as additional input, which models the information flow and trust
assumptions on resource types and auxiliary predicates. It checks for information flow by computing a
transitive closure on an information flow graph coloring with the traversal rules as policy. From that, the
tool diagnoses isolation breaches and provides refinement for a root causes analysis.

We evaluate our approach in a case study with a financial institution, which demonstrates the reasonable
performance of our system as well as its ability do detect realistic isolation breaches in the infrastructure.

e Soren Bleikertz, Thomas Grof3, Matthias Schunter, and Konrad Eriksson. Automated Information
Flow Analysis of Virtualized Infrastructures. In 16th European Symposium on Research in Computer
Security (ESORICS’11). Springer, Sep 2011.

Virtualization Assurance Language

We contribute the first formal security assurance language for virtualized infrastructure topologies. More
precisely, we model such an assurance language in the tool-independent Intermediate Format (IF) [AVI03],
which is well suited for automated reasoning. We lay the language’s formal foundations in a set-rewriting
approach, commonly used in automated analysis of security protocols, with an extension to graph analysis
functions. As a language aiming at expressing topology-level requirements, it can express management
and security requirements as promoted by [DDLS01]. Management requirements in the cloud context
are, for instance, provisioning and de-provisioning of machines or establishing dependencies. Security
requirements are, for instance, sufficient redundancy or isolation of tenants. To test the expressiveness of
our proposal, we model typical high-level security goals for virtualized infrastructures. We study the areas
deployment correctness, failure resilience, and isolation, and propose exemplary definitions for respective
security requirements.

» Soren Bleikertz and Thomas Grof3. A Virtualization Assurance Language for Isolation and Deploy-
ment. In [EEE International Symposium on Policies for Distributed Systems and Networks (POLICY’11).
IEEE, Jun 2011.

Automated Verification of Security Policies

We are the first to apply general-purpose model-checking for the analysis of general security properties
of virtualized infrastructures. We propose the first analysis system that can check the actual state
of arbitrary heterogeneous infrastructure clouds against abstract security goals specified in a formal
language. Our approach covers static analysis as well as dynamic analysis and employs a versatile
portfolio of problem solver back-ends. We believe that our experiments with different analysis strategies
(Horn clauses, transition rules) are of independent interest, because the problem instances for security
assurance of virtualized infrastructures are structured differently than traditional application domains
of model checkers, notably security protocols. In addition, we present early insights on the complexity
relations of different problem classes.

As a case study, we successfully model checked a sizable production infrastructure of a global financial
institution against the zone isolation goal. We have previously analyzed this infrastructure extensively
with specialized tools and found the same problems with this generic approach. We report that our
different optimizations allowed us to improve the performance by several orders of magnitude: whereas
the non-optimized problem instances did not terminate within several hours, the optimized problem
instances completed the analysis in the order of seconds.

e Soren Bleikertz, Thomas Grof3, and Sebastian Modersheim. Automated Verification of Virtualized
Infrastructures. In ACM Cloud Computing Security Workshop (CCSW’11). ACM, Oct 2011.
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Dynamic Information Flow Graphs

We propose the novel concept of information flow graphs constructed from user-defined flow rules. The
flow rules capture trust assumptions on isolation in system components based on their attributes and
connectivity. This leads to a generic and user-configurable approach that we apply to the case study of
isolation in virtualized infrastructures. We analyze the correctness and complexity of our approach, in
particular we adapt a firewall fault model to analyze flow rules sets.

We establish dynamic information flow graphs that are updated based on system model changes, including
incremental, decremental, node property, and resulting connectivity changes. This enables a differential
information flow analysis for dynamic systems. We apply our dynamic approach also to the case study of
isolation in virtualized infrastructures in combination with a system that provides system model changes.

» Soren Bleikertz, Thomas Grof3, and Sebastian Modersheim. Dynamic Information Flow Graphs with
Flow Rules. Technical Report RZ3893, IBM Research, 2016.

Dynamic Infrastructure Model and Reactive Analysis

We establish an automated security analysis of dynamic virtualized infrastructures that detects miscon-
figurations and security failures in near real-time. The key is a systematic, differential approach that
detects changes in the infrastructure and uses those changes to update its analysis, rather than performing
one from scratch. Our system monitors virtualized infrastructures for changes, updates a graph model
representation of the infrastructure, and also maintains a dynamic information flow graph to determine
isolation properties. Whereas existing research in this area performs analyses on static snapshots of such
infrastructures, our change-based approach yields significant performance improvements as demonstrated
with our prototype for VMware environments.

In order to establish such a differential security analysis, we propose an architecture that caters for near
to real-time detection of configuration changes in heterogeneous virtualized infrastructures. We maintain
a synchronized graph model of these infrastructures using a set of algorithms for the computation of
graph deltas (added/removed nodes and edges, changed node attributes) applicable to a graph model
based on change events. We offer a practical implementation of our system for VMware environments.
Our evaluation shows that the differential approach reduces the overall analysis time significantly, putting
near-to-real-time analysis in our reach. For a broad spectrum of cloud operations and even for large
infrastructures, we measure model update times in the order of milliseconds, which renders our approach
several orders of magnitude more efficient than previous static analysis approaches.

» Soren Bleikertz, Thomas Grof3, and Carsten Vogel. Cloud Radar: Near Real-Time Detection of
Security Failures in Dynamic Virtualized Infrastructures. In Annual Computer Security Applications
Conference (ACSAC 2014). ACM, Dec 2014.

Operations Model and Proactive Analysis

We tackle the problem of misconfigurations and insider threats by establishing a practical security system
that proactively analyzes changes induced by management operations with respect to security policies.
We achieve this by contributing the first formal model of cloud management operations that captures
their impact on the infrastructure in the form of graph transformations. Our approach combines such a
model of operations with an information flow analysis suited for isolation as well as a policy verifier for a
variety of security and operational policies. Our system provides a run-time enforcement of infrastructure
security policies, as well as a what-if analysis for change planning.

We propose the first formal model of cloud management operations, the operations transition model, that
captures how such operations change the infrastructure’s topology and configuration. We express the
operations as transformations of a graph model of the infrastructure, which is based upon the formalism
of graph transformation [Roz97]. Further, we propose a unified model that integrates with the operations
model the specification of security policies as well as an information flow analysis suited for isolation
policies. We formalize a variety of policies, such as in the areas of isolation, dependability, and operational
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correctness using graph matching. Finally, based on our model, we design and implement a practical
security system which assesses and proactively mitigates misconfigurations and security failures in VMware
infrastructures. We evaluate the performance of our analysis in a practical environment, and we further
discuss and test the security of our system.

» Soren Bleikertz, Thomas Grof3, Sebastian Modersheim, and Carsten Vogel. Proactive Security Analy-
sis of Changes in Virtualized Infrastructures. In Annual Computer Security Applications Conference
(ACSAC 2015). ACM, Dec 2015.

Industry Impact and Other Publications

The research in this dissertation lead to the creation of a new product called IBM PowerSC Trusted
Surveyor [BCD*13], which provides inventory and analysis of network isolation in IBM PowerVM-based
virtualized infrastructures. Our contributions to the product line were awarded an IBM Research Division
award. Furthermore, we published the following papers in the area of cloud computing security that are
not part of this thesis:

e Soren Bleikertz, Anil Kurmus, Zoltan A. Nagy, and Matthias Schunter. Secure Cloud Maintenance -
Protecting workloads against insider attacks. In 7th ACM Symposium on Information, Computer and
Communications Security (ASIACCS’12). ACM, May 2012.

» Soren Bleikertz, Sven Bugiel, Hugo Ideler, Stefan Niirnberger, and Ahmad-Reza Sadeghi. Client-
controlled Cryptography-as-a-Service in the Cloud. In International Conference on Applied Cryptogra-
phy and Network Security (ACNS 2013). Springer, Jun 2013.

» Soren Bleikertz, Toni Masteli¢, Sebastian Pape, Wolter Pieters, and Trajce Dimkov. Defining the
Cloud Battlefield - Supporting Security Assessments by Cloud Customers. In IEEE International
Conference on Cloud Engineering (IC2E 2013). IEEE, Mar 2013.

1.5 Outline and Organization

The remainder of this dissertation is organized as follows. In Chapter 2 we explain the concept of
virtualization and virtualized infrastructures. We review the existing literature in the areas of infrastructure
discovery and modeling, policy languages for operational and security requirements, isolation and
information flow analysis in particular in virtualization, as well as infrastructure state and change-based
security analysis.

We first study the information flow analysis and policy-based verification of static virtualized infrastructure
topologies and configurations. In Chapter 3 we introduce a system that automatically extracts the config-
uration from heterogeneous virtualized infrastructures and performs a graph-based static information
flow analysis to detect isolation violations. The approach is generalized to a range of user-defined policies
by establishing a policy language in Chapter 4 and the usage of model-checkers and theorem provers in
Chapter 5 to verify such policies against a given static infrastructure.

Building up on the analysis in the static case, we then study the analysis of dynamic virtualized infrastruc-
tures. In Chapter 6 we introduce an information flow analysis using dynamic information flow graphs,
which are computed and updated for a dynamic infrastructure topology. Chapter 7 describes a system that
analyzes configuration changes with regard to security policies in a reactive approach, i.e., after a change
has been performed. In Chapter 8 we introduce a system that operates in a proactive way, where changes
are analyzed before they are deployed.

Finally, Chapter 9 summarizes the contributions of this dissertation. We conclude by discussing the
limitations of the proposed approach and outline directions of future work.

22



2 Background and Literature Review

2.1 Background

We will introduce in this section the concepts of virtualization, virtualized infrastructures, and cloud
computing, and how these concepts are implemented in practical deployments.

2.1.1 Virtualization

Virtualization is a way of multiplexing multiple virtual resources on top of a physical resource while
preserving logical resource isolation, i.e., compartmentalization. Grandison et al. [GMTA10] define
virtualization as the following:

‘A method, process or system for providing services to multiple, independent logical entities that
are abstractions of physical resources, such as storage, networking and computer cycles.”

Virtualization provides benefits such as rapid provisioning due to software-based resource orchestration,
higher physical resource utilization, as well as flexibility by decoupling from the physical hardware. These
are desired properties in modern IT infrastructures.

In the following we will explain in more detail different methods of virtualization for compute, storage,
and network resources, which are widely deployed and commonly used. We will further discuss the
composition of virtualization of different resources in larger infrastructures and the management of such
virtualized infrastructures.

Virtual Virtual Virtual Virtual
Resource | Resource Machine Machine
Virtualization .
Hypervisor
Layer
Physical Physical
Resource Server

Figure 2.1.: Virtualization layers in its generic form and specifically for compute resources as a hypervisor.

2.1.1.1 Compute Virtualization

Virtualization of compute resources date back to IBM mainframes in the 1960s and is now extensively
used in modern IT infrastructures. The layer that provides compute virtualization is called a hypervisor
or Virtual Machine Monitor (VMM). The hypervisor allows to run multiple virtual machines (VM) on a
single physical server by sharing the physical compute and memory resources. The hypervisor preserves
isolation between the virtual machines, although side- and covert-channels cannot be entirely prevented
in a shared physical resources environment. The hypervisor is responsible for the entire lifecycle of the
VM, including its setup and creation, termination, as well as migration to another physical server. Network
and storage resources are also setup by the hypervisor for the VMs and thereby the hypervisor coordinates
the entire provisioning of a VM.

We differentiate between three different kinds of compute virtualization: para, full, and hardware-assisted
virtualization.
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Para-Virtualization requires that the operating system in the virtual machine is aware that it is running in
a virtualized environment. The guest system has been modified to communicate with the hypervisor, in
particular for privileged operations that are not allowed to be executed by virtual machines directly due
to security reasons. Proprietary operating systems have been lacking support for para-virtualization
due to the required modifications. Xen [BDF*03] is one of the most common hypervisors that employs
para-virtualization.

Full-Virtualization allows to run operating systems in VMs in an unmodified form, thereby also enables the
virtualization of proprietary guest systems. The hypervisor has to translate the guest system instructions,
again in particular for privileged operations. One benefit of such a instruction translation layer is
that the architecture of the guest and the host systems may differ. QEMU [Bel05] is an example of
a full-virtualization hypervisor that supports many architectures. Although instruction translation
may result in negative performance impact for the guest, the hypervisor can also choose to directly
execute safe instructions on the CPU, as realized in full-virtualized VMware ESX/ESXi and QEMU with
the KQEMU [Bel08] acceleration extension. To provide I/0 to guests, the hypervisor has to emulate
common devices, such as network interface cards or storage controllers, that the guest system drivers
support.

Hardware-Assisted Virtualization combines the performance of para-virtualization with the ability to run
unmodified systems of full-virtualization. However, it requires the support of the CPU to provide
compute virtualization, such as AMD-V and Intel VT-x, in particular to trap privilege operations in VMs.
For guest I/0, the hypervisor can either provide device emulation, as in the case of full-virtualization,
or the guests use para-virtualized drivers, such as based on virtio, which offer better performance. New
generations of CPUs also provide an I/O MMU that allows to grant direct access of a VM to a hardware
device, while restricting the use of DMA for isolation reasons.

With the increased availability of CPUs that offer hardware capabilities, hardware-assisted virtualization
has become the dominating form of compute virtualization. In particular the recent performance
improvements in the CPU’s virtualization capabilities and the use of para-virtualized device drivers have
made this form of compute virtualization the most efficient one.

Besides differentiating the method of compute virtualization, hypervisors are also classified into two
types: type-1 or native hypervisors, and type-2 or hosted hypervisors. The first type runs natively on
the hardware similar to a regular operating system kernel, whereas the latter type requires an existing
operating system to run. In server virtualization, type-1 hypervisors are the dominant ones, whereas
for desktop virtualization type-2 hypervisors are also common. In the following we discuss examples of
widely deployed type-1 hypervisors:

KVM (Kernel-based Virtual Machine) [KKL*07] is an open-source extension to the Linux kernel that turns
Linux into a type-1 hypervisor. QEMU can leverage KVM as an accelerator, and thereby replacing KQEMU,
when the host and guest architectures are the same. QEMU is used to setup the VM and to provide
device emulation, in case that virtio para-virtualized drivers are not used. Higher-level hypervisor and
VM management is often done using libvirt. KVM with QEMU is the compute virtualization stack that is
embraced by the Linux community.

VMware ESXi/ESX [VMwO0S8] is a proprietary full- and hardware-assisted virtualization type-1 hypervisor.
It provides an extensive API [VMw13a] to manage the hypervisor configuration and its inventory.
Originally, ESX required a full Linux as a service operating system, but ESXi reduced that dependency
and is now a small embedded hypervisor, with the goal of reducing the trusted computing base (TCB)
and its attack surface.

Xen [BDF*03] is an open-source type-1 hypervisor that provides both para- and full-virtualization. The
VM management and I/0O is done in a privileged VM, domain in Xen’s terminology, which is called domO.
A regular unprivileged VM is called domU. DomO is responsible for setting up and manage the lifecycle
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of a VM by interacting through privileged instructions with the hypervisor. Furthermore, guest I/0 is
realized through domO, where network bridging or routing is set up, as well as storage provided.

From a security point of view, the Xen hypervisor provides a relatively small TCB of hundreds of
thousands source lines of code (SLOC). However domO is a privileged and trusted domain that often
runs a fully-fledged Linux kernel and userland with millions of SLOC, which have to be considered in the
TCB as well. Approaches to reduce the trust in dom0 have been proposed [BLCSG12, MMHO08, BBI*13].

PowerVM [CCL*13] for PowerPC is an example for a non-x86 type-1 hypervisor. Unlike the previous
example, this hypervisor is part of the firmware of the server. Inheriting from the mainframe virtualiza-
tion, VMs are called logical partitions (LPARs). A privileged partition, the Virtual I/0 Server (VIOS),
provides network and storage I/0 to the guests, similar to Xen’s domO.

In addition to the previous examples, type-2 hypervisors, such as VirtualBox and VMware workstation
target desktop installations and not server virtualization in large-scale for enterprise infrastructures.
Furthermore, operating-system-level virtualization with containers has seen increased popularity. The
advantage compared to virtual machines is that containers require less overhead and the numbers of
containers per physical host can be of one order of magnitude larger compared to VMs. Containers offer
lower overhead but with weaker isolation, based for example on Linux cgroups . In order to provide
adequate isolation, containers of one tenant are hosted within tenant VMs, in order to rely on the isolation
provided by the VM.

2.1.1.2 Storage Virtualization

According to the general definition of virtualization, storage virtualization multiplexes virtual storage
resources on physical storage, for example, hard disks. We differentiate between local and remote storage
as well as file and block-based storage.

Local storage is only available to virtual machines that are running on the physical server that also
contains the physical storage resources. In that case we have a convergence of compute and storage
resources in a physical server. For remote storage, the virtual storage resources are provided over the
network and attached by the hypervisor to the virtual machines. Local storage in public clouds is usually
considered ephemeral, i.e., the content is only persistent as long as the VM is running on that particular
physical machine. If the VM terminates, the associated local storage is also deleted.

Block-level storage offers a storage interface that operates on fixed-sized blocks. Physical storage, such as
hard disks, provide such an interface with blocks, also called sectors, and block sizes of 512 or 4k bytes.
Virtual disks that are attached to virtual machines operate on the same interface. On the other hand,
file-level storage offers an additional abstraction layer on top of block-level storage and provides, among
other features, data storage with varying lengths. In order to use a file as a backend for a virtual disk
attached to a VM, we have to use a layer that provides a block-level interface on top of files, such as
Linux’s loopback devices.

Local File-level Storage

For local file-level storage we can simply leverage the existing file systems in the hypervisor. For each
virtual disk of a VM a file is created to form the disks backend and we use a block-level layer on top of the
created file, such as Linux’s loopback devices. The advantages of this form of storage virtualization is that
it is easy to deploy, since the existing file system can be used, and new virtual disks can be created by just
creating new files. However, many abstraction layers, including the physical block device access, the file
system, and the loopback device, negatively impact the virtual disk performance. Specialized file systems,
such as VMware’s VMFS, are optimized for virtual machine workloads and offer nearly direct block-device
access performance.
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Local Block-level Storage

We can either map a physical block storage device to a VM or use a storage virtualization layer on top of
the physical block devices that provide virtual ones. The first option can be realized using, for instance,
VMware Raw Device Mapping (RDM) or VirtIO blk, and offers best performance but with limited flexibility.
The other option is to virtualize the physical block storage devices into virtual ones. For example using the
Logical Volume Manager (IVM) for Linux, we can aggregate multiple physical block devices into volume
groups. From the volume groups we can flexibly provision logical volumes that form the backend of the
virtual disks for VMs.

Remote File-level Storage

Network-attached storage (NAS) is used to provide remote file-level storage based on established tech-
nologies such as NFS or CIFS. Files are used as virtual disk backends similar to local file-level storage,
however in this case they are stored on the network file system and not locally. VMware’s VMFS can also
be used as a cluster file system that provides access to the same VM files for multiple hypervisors, but
requires access to a shared network block-level storage, which is discussed in the next paragraph. New
distributed network file systems have been proposed, such as CephFS [WBM*06], that provide better
fault tolerance compared to existing technologies such as NFS or CIFS.

Remote Block-level Storage

Storage area network (SAN) provides block-level access to a remote storage. Established technologies
exists such as iSCSI and Fiber Channel (FC). The hypervisor discovers one or multiple of such network
block devices and can either expose them directly to the virtual machines or use them in conjunction
with a file system, such as VMFS. Systems based on established technologies, such as iSCSI or FC, often
have limited scalability and fault tolerance. New systems that have vertical scalability, no single point of
failures, and self-healing have been proposed such as Ceph RADOS [WLBMO7] and Sheepdog [Mit14b].
VSAN [VMw15] provides similar properties for VMware environments.

2.1.1.3 Network Virtualization

Many methods exists to logically separate physical networks, in order to realize virtual networks. For
example, distinct IP address spaces are assigned to realize a logical partitioning of the network. Firewalls
and routers mediate and control traffic between elements of different IP address spaces. The network
isolation and partitioning happens in Layer 3 [Zim88], i.e., the network layer including IP However,
typically providers of multi-tenant environments want to offer Layer 2 network partitioning, because the
tenants can control their own IP configuration and addressing scheme.

A notable building block in network virtualization and Layer 2 virtual networks are virtual switches, also
called software network bridges. They offer the same functionality as physical network switches, but they
are implemented in software and can be setup and configured through command-line tools or APIs. So
called Network Function Virtualization [ETS12] applies the replacement of physical network elements
with software not only to switches, but also to other network devices such as firewalls and load-balancers.

Virtual Local Area Networks

A widely deployed way to realize logical Layer 2 network separation is to use a Virtual Local Area Network
(VLAN), which is defined in IEEE 802.1Q. A 32-bit field is inserted in the Ethernet frame and includes a
12-bit VLAN identifier, also called a VLAN tag. Logical separation of the physical network depends on the
disjointness of the VLAN IDs. A VLAN ID of 0 indicates an untagged Ethernet packet and 4095 is reserved
for implementation purposes, e.g., may represent a trunked port.

VLAN identifiers can either be configured and applied on the network switches or on the hosts. In
traditional IT infrastructures, VLAN tagging has been realized on the switch level, because physical servers
have been grouped into VLANs and the switches were centrally managed by the network staff, i.e., the
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switches enforced the isolation. In a virtualized infrastructure, we are facing a more fine-grained grouping
into VLANs: Multiple VMs on a single physical server may be grouped into different VLANs. In that
case, the VLAN tagging must happen on the host level, in particular in the hypervisor, in order to group
individual VMs into VLANs. Therefore, the hypervisor on the host-level applies the VLAN tags to the VM’s
network traffic.

In case of KVM and Xen, the Linux kernel is responsible for configuring the VM’s network configuration
and setting the VLAN tags. A virtual Ethernet device is configured that applies a given VLAN tag. The
virtual device is used as an uplink for a software network bridge, to which a set of VMs are connected that
belong to the same VLAN. Traffic between VMs on the same host will flow through the software network
bridge. External traffic will flow through the uplink device where the VLAN tag is applied. In VMware
ESXi, the virtual switches (vswitches) in the hypervisor [VMwO07] provide virtual networking and also
VLAN tagging. The vswitches are further divided into port groups that aggregate multiple connected VMs
(virtual ports) under one common configuration. In particular, a port group configuration can contain
a VLAN ID, which is applied to all the traffic of that particular port group, i.e., to the traffic of all VMs
connected to this port group.

Traffic Encapsulation

The number of virtual networks with VLANS is limited to 4094 (12-bit minus 2 for VLAN IDs 0 and 4095).
In order to overcome this limitation, in particular in large multi-tenant cloud environments, and still
providing Layer 2 networking to tenants, a new encapsulation approach called VXLAN [MDD"14] has
been proposed. VXLAN encapsulates layer2 tenant traffic in UDP packets over IP and provides 24-bit
VXLAN network identifiers to separate the virtual networks. Similar encapsulation mechanisms have
been proposed. For instance, Generic Routing Encapsulation (GRE) [FLH*00] provides encapsulation of
network layer traffic, e.g. IB inside point to point IP tunnels. EtherIP [HHO2] provides Ethernet frame
encapsulation in IP tunnels. Despite the limitations of VLANS, they remain widely deployed, in particular
in private virtualized infrastructures.

2.1.1.4 Virtualized Infrastructure

A virtualized infrastructure is composed of the three building blocks of compute, network, and storage
virtualization as well as an infrastructure management layer. Figure 2.2 illustrates a model of a virtualized
infrastructure with a central management host and the different virtualization elements, for instance with
VMs running on physical hosts and vswitches with port groups providing VLANS.

Model of Virtualized Infrastructure

Portgroups

VLAN 2

Management
Host

nagement
perations

]

Tenant Admin Network Storage

Figure 2.2.: Virtualized Infrastructure Model
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Infrastructure Management

So far we have presented the virtualization building blocks, but we want to be able to manage a large
virtualized infrastructure, not just individual hypervisors and systems. Therefore, the management and
resource orchestration is an important aspect.

We differentiate between centralized and decentralized management. In the centralized approach, manage-
ment operations are performed through a central management host that manages the entire virtualized
infrastructure. The management host is aware of all the resources and can orchestrate them according
to the user requests. We have illustrated this architecture in Figure 2.2, where provider and tenant
administrators send their management operations to the management host, which operates on the entire
virtualized infrastructure. In a decentralized approach, the management operations are directly performed
on the hypervisors and individual systems, which we illustrated in Figure 2.2 as direct operations.
Typical examples for centralized management is VMware with vCenter, which is a centralized manage-
ment server that provides a web-service API. Administrators connect either with a proprietary client or
programmatically to the API, in order to perform their operations on the infrastructure. In PowerVM
environments we have a similar architecture with a Hardware Management Console (HMC) that provides
a web-interface and SSH console for administrators to manage their PowerVM environment. On the other
hand, Xen and KVM with LibVirt target a decentralized management, where individual hypervisors are
managed. Aggregated management tools are built on top of this decentralized management, for example
Xen’s XenCenter, but these do not provide a central management host.

Virtualized and Virtual Infrastructures

A virtualized infrastructure is a computing infrastructure that uses virtualization on physical resources,
such as compute, storage, and network, in order to provision and provide virtual instances of these
resources. A virtual infrastructure is composed of these virtual compute, network, and storage resources,
which are provide through virtualization by the underlying infrastructure. Users are often unaware of
the underlying virtualized infrastructures and are only concerned with their virtual infrastructure and
the management of their virtual servers. Many virtual infrastructures for multiple tenants may exists
on the same physical resources. The virtualized infrastructure encompasses the physical resources, the
virtualization layers and their configuration as well as all the virtual infrastructures that are hosted.

2.1.2 Cloud Computing

Building upon the concepts of virtualization and virtualized infrastructures, Cloud Computing has become
a widely used model of service and IT resource delivery. NIST [MGO9b] defines Cloud Computing as the
following:

“Cloud computing is a model for enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management effort or service
provider interaction.”

Virtualization is a key technology that enables such sharing of resources, rapid provisioning, as well
as compartmentalization of different tenants. Cloud computing and in particular cloud management
software provides fully automated resource orchestration on top of a virtualized infrastructure. NIST
defines the following cloud deployment and service models [MGO09b]:

Deployment Models

NIST introduces multiple deployment models and distinguishes between private, community, public, and
hybrid clouds.

In private clouds, the infrastructure is exclusively used by a single organization, although the organization
can be composed of multiple business units, which are cloud tenants on their own and should be isolated
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from each other. The cloud infrastructure must not necessarily be owned and managed by the organization
itself, but can be operated by a third-party. A community cloud is used by a community of organizations
that share common requirements, such as security or compliance related.

Public clouds offer cloud infrastructure to the general public. The infrastructure is operated and typically
also owned by the cloud provider. Multiple tenants, potentially also conflicting ones, share the same
infrastructure and are only logically isolated from each other. Some public cloud providers also offer
virtual private clouds that provide stronger network isolation and also the possibility of exclusively using
physical servers without the co-location of other tenants. Virtual private clouds are often integrated
into the cloud consumers on-premise infrastructure through a VPN, thereby forming a hybrid cloud
infrastructure.

Service Models

There exists multiple abstraction levels to provide a service. The common ones are Infrastructure (IaaS),
Platform (PaaS), and Software as a Service (SaaS), although other service types have been proposed as
well, which can be described as XaaS: everything as a Service.

IaaS, or also called Infrastructure Clouds, offer the provisioning of compute, network, and storage
resources. The cloud consumer has control over the computing environment in terms of what operating
system and applications are installed on which virtual servers, as well as the virtual servers network and
storage resources. The consumer however has no control over the underlying virtualized infrastructure
in terms of controlling on which physical servers their VMs are provisioned. However in private cloud
infrastructures, the provider and consumer come from a single organization and may cooperate to
provide the consumers more insights on the underlying infrastructure in case of security and compliance
requirements. A common open-source cloud management software for private infrastructure clouds is
OpenStack.

PaaS$ supports developers to build and run web services. The cloud consumer deploys applications using
programming environments, libraries, services, and other tools provided by the cloud provider. Common
application infrastructure like databases are provided in a scalable and managed way to the application
developers. In PaaS, the cloud consumer does not control the underlying computing infrastructure
(servers, networks, storage), but only has control over the application environment. Examples for PaaS
include on the open source side Cloud Foundry and on the commercial side Heroku, Google App Engine,
and IBM BlueMix.

In SaaS the cloud consumer uses a provider’s application, which is running on a cloud infrastructure. The
application is accessible over the network and typically consumed with a web browser. Moving higher in
the abstraction levels, in SaaS the cloud consumer neither control the infrastructure as in PaaS, nor the
application environment (operating system, individual application capabilities). Typical examples of SaaS
are Google GMail and Salesforce CRM.

The different service levels often build on top of each other. For example, a startup that offers a new
application in a Saa$ service model may use Heroku to deploy their application, and Heroku deploys their
PaaS stack on top of Amazon Web Services cloud infrastructure (IaaS). This renders Infrastructure as a
Service as the critical and fundamental basis on which many other applications and platforms depend on.
Security problems in the cloud infrastructure layer, or in the virtualized infrastructure that is an integral
part of this layer, can negatively impact the security of many tenants as well as their applications and
users.

2.2 Literature Review

We review the literature and existing work in the areas of i) infrastructure topology and configuration
discovery, monitoring, and modeling, ii) policy languages for operational (configuration) and security
aspects, iii) isolation and information flow analysis, as well as iv) infrastructure state and change security
analysis and planning.
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Figure 2.3.: Overview of Literature Review.

2.2.1 Configuration Discovery and Modeling of Networks and Systems

Non-Virtualized Infrastructure Discovery

The infrastructure discovery in non-virtualized environments has produced a variety of systems that cover
different aspects of the infrastructure including physical network topology [BGJ*04, BBGR03, LOGO01],
routing topology [SMWAO04, HPMCO02], dependency of applications [CZMB08, CKG*08, KGE06], and
application storage [JPRD10]. For a survey on further discovery methods we refer to [DF07].

Graph-based Modeling of Networks

The modeling of network topologies is often based on graphs as they intuitively capture the relational
aspects of the network [CDZ97]. These models can use graphs in different forms, e.g., they can be directed
or undirected, edge-attributed to represent network bandwidth or costs, in order to capture the specific
problem domain. Rules of routers and firewalls are as well modeled as forwarding graphs [KZZ*13] or as
binary decision diagrams [ASMEAEQ9], which are an encoding of a Boolean function as a directed acyclic
graph.

Virtualized and Cloud Infrastructures
A tendency in virtualized data center is that the complexity in the physical network shifts into the
virtual one. The physical network configuration is simplified and its topology flattened, whereas complex
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virtual networks are created. Approaches for the discovery of the virtual network topology have been
proposed [BHK12, NMCS10]. In public infrastructure clouds, the configuration of the firewall setup
has been extracted and modeled as a graph [BSP*10]. The placement of VMs has been analyzed in
public infrastructure clouds through network probing and co-location verification [RTSS09, HSUW13].
Inspecting the configuration inside a virtual machine can be performed during runtime using virtual
machine introspection [PdCLO7, MKLT13] or statically by analyzing the VM images [WZA"09]. An
application and service centric graph model has been proposed for cloud infrastructures [BFL*12] with
an automated discovery system [BBKL13].

Monitoring of Dynamic Networks

IT infrastructures tend to become more and more dynamic. Existing work on the discovery and monitoring
of dynamic environments has focused on the network level, for instance on routing [AFBB02, KVCP97] or
peer-to-peer overlay networks [RIF02].

Dynamic Virtual and Cloud Infrastructures

Virtualization lead to this dynamic behavior also for compute and storage resources. We need to be able
to monitor and model changes for network, compute, and storage resources in virtualized infrastructures.
On the hypervisor level, Cloud Verifier [SSVJ13] detects changes in the integrity of the hosted VMs
on behalf of cloud customers. The system can also be used by providers to monitor the integrity of
their cloud platform. From a performance point of view, vQuery [SGG12] is a system for monitoring
VMware environments that stores partial topological information in a graph model and tracks many
performance metrics. In public infrastructure clouds, Amazon recently introduced a service, called AWS
Config [Amal4a], that provides change events to customers for their virtual environments. However, it
provides no insights on changes in the underlying infrastructure, e.g., on VM migration and placement.

Summary

Many discovery approaches for physical infrastructures (network topology, routing etc.) have been
proposed. It is necessary to complement the existing view on the physical infrastructure with a view on
the virtualized one. The challenge is to support heterogeneous virtualized environments that cover the
entire stack of compute, network, and storage resources, as well as to cope with its dynamic behavior and
frequent changes. Since graph-based models are widely used for capturing network topologies, they are
possibly suited for virtualized infrastructure topologies as well.

2.2.2 lIsolation and Information Flow Analysis

Isolation is important in multi-tenant virtualized infrastructures. We review existing work in the areas of
isolation and information flow analysis and control.

(Decentralized) Information Flow Control

Information flow control (IFC) [Den76] is a mandatory access control approach that governs how
information may flow between different storage objects based on their security classes. Decentralized
IFC (DIFC) [ML97] introduces security labels for each object that, for instance, denotes its allowed readers.
Thereby following an approach close to discretionary access control. DIFC has been implemented in new
operating systems such as HiStar [ZBWKMO06] and Flume [KYB*07].

Access Control Security Models

Multiple access control models have been proposed that govern how information may flow between
storage objects. These include Bell-LaPadula [BLP76] for confidentiality, Biba [Bib77] for integrity, type
enforcement [BK85], Clark-Wilson integrity [CW87], and Chinese wall [BN89].
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Reachability Analysis in Networks

Isolation analysis in networks is based on network reachability and firewall filtering, which has been
extensively studied in [ASMEAE08, KL09, KSS*09, XZM*04] and [MKO05, MWZ00, Woo01] respectively.
Reachability analysis in dynamic networks has also been demonstrated [KZZ*13] as well as algorithms
that enable efficient reachability queries in dynamic graphs [RZ04].

Hypervisor Isolation and Security

In virtualized environments, a major focus is the study of isolation on the hypervisor level. Kelem and
Feiertag apply the Separation Model [Rus82] to model a secure virtual machine monitor [KF91]. In
practice such strict isolation between VMs is not desired, but a controlled and mediated communication.
sHype [SJV*05] is an extension to the Xen hypervisor that provides MAC policies such as Chinese wall
to prevent side channel attacks and type enforcement for sharing resources. In practice, side channels
between VMs, e.g., based on CPU caches [Aci07, PerO5], has been investigated [RTSS09] and defense
mechanisms for the hypervisor have been proposed [ZR13, ZJOR11].

Furthermore, many new hypervisors and security architectures have been proposed to protect applications
and VMs against malware or malicious administrators [GPC*03, ZCCZ11, MLQ*10]. A detailed compari-
son of a subset of these secure hypervisors is given by Vogl [Vog]. In general, introducing a new critical
piece of system software, such as the hypervisor, also increases the potential of vulnerabilities which may
lead to privilege escalation and isolation breaks [Orm07, Woj08]. Architectures with minimal [SK10]
or no hypervisor [KSRL10], with self-protection [WWGJ12, WJ10], as well as formally verified hyper-
visors [KEH*09], have been proposed to reduce the attack surface and harden the hypervisor. Besides
seL4 [KEH'09], further models of hypervisors have been proposed to study their security properties
including isolation [BBCL11, FM11, HLC*13].

IFCin Cloud and Virtualized Infrastructures

Moving from the hypervisor to higher levels of the virtualization and cloud computing stack. Bacon
et al. provide an overview and discussion on the usage of information flow control in secure cloud
computing [BEP"14]. They conclude that DIFC is particularly suited for Platform as a Service (PaaS),
because they believe this layer is best suited to provide labeling information on data and that existing
open source implementations can be augmented. In fact, many approaches for information flow control
on the PaaS level have been proposed. SilverLine [MRF11] offers data and network isolation based on
data labeling, however requires changes to both Xen and the guest VM kernel. SilverLining [KHK14]
focuses on Java application in the context of Hadoop map-reduce jobs and offers IFC through aspect
oriented programming. It uses an information flow graph that captures users and files as nodes with
read/write or disallowed flow directed edges. CloudSafetyNet [PMOK™*14] monitors information flow
through HTTP tagging on the client side and socket monitoring. CloudFence [PKZ*13] offers data flow
tracking on the byte level using binary instrumentation. They claim to be more fine-grained than previous
approaches that operate on the process level, such as SilverLine. CloudFlow [BFB*14] is based on VM
introspection to monitor and extract the tasks with their SELinux security labels that running inside a VM.
They implement a Chinese wall policy to prevent, for instance, that a VM with unlabeled tasks is running
on the same physical server as a VM that runs a top secret task.

IFC also finds application in infrastructure management and administration. For instance the Chinese wall
policy is implemented for administrators that log into customer virtual machines, in order to prevent an
administrator to log into VMs of conflicting customers [WAHS10]. Further, H-one [GL12] is a system that
uses information flow tracking to establish an audit log of VM configuration tampering by administrators.

Isolation Architectures in Virtualized Infrastructures

There exists also approaches that deploy the infrastructure in such a way that it provides tenant isolation.
The Trusted Virtual Datacenter (TVDc) [BCP*08] offers automated deployment with isolation and
integrity by leveraging a trustworthy hypervisor, trusted computing, and automated setup of network
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isolation [CDRS07]. The system uses Trusted Virtual Domains (TVDs) [CDE*10] to group resources
together and defines an information flow policy, which is a similar concept to IFC. A formal isolation
model for TVDc is presented in [BKS14]. On the network level, CloudPolice [PYK*10] provides network
access control in the hypervisor and essentially implements a distributed firewall. Network architectures
that ensure tenant isolation while also integrating with the customers on-site network exists [HLMS10,
WGR*09]. IFC approaches do not protect against side channel attacks, which recently have been
demonstrated in PaaS [ZJRR14], and additional security approaches are required. In particular, the
enforcing of cache isolation [RNSEQ9] is important as many side channels rely on the shared cache, as
well as to provide a VM placement algorithm that offers co-location resistance [AKM*14]. Falzon and
Bodden [FKBE15] propose a framework to provide isolation on multiple layers, such as on the virtual CPU,
process and containers, and virtual machines. The framework migrates processes and virtual machines
when a policy is violated, for instance, when unusual activity is detected by a probe.

Summary

Mandatory access control approaches for information flow as well as policies have been extensively
studied and applied, for instance, in the design of new operating systems. Similarly, reachability analysis
is employed in networks to determine isolation of network components. In the context of virtualization,
isolation has been studied on the hypervisor level as well as application level. We need to lift information
flow analysis to the entire virtualized infrastructure level and be able to cope with the different trust
assumptions, e.g., side channel resistance on particular secure hypervisors. Information flow control
approaches often require modifications to the software components, however less invasive approaches,
such as static analysis, have not been adequately studied in the context of virtualized infrastructure
topologies and configurations.

2.2.3 Formal Languages for Security and Operational Policies

We review formal languages for both configuration and infrastructure management as well as languages
for security policies.

Configuration and Deployment

Policy-based infrastructure management is becoming more popular as infrastructure automation increases.
On the operating system level, such policies describe for instance configuration files and installed packages.
Tools such as Chef [che], Puppet [pup], and CFengine [cfe, Bur95] offer either proprietary or embedded
languages to describe the configuration state.

In particular for VM deployments, the Open Virtualization Format (OVF) [DMT10] is a standardized
specification language for the packaging and distribution of virtual machines. OVF is used to describe
general information and virtual resource usage for an individual virtual machine or a virtual appliance
consisting of multiple VMs, but not for an entire virtualized infrastructure. PoDIM [DJO07] is a configuration
language that not just focuses on individual operating systems or virtual machines, but one that covers
high-level cross-hosts configuration management. Similarly, TOSCA [OAS13] is a standardized XML-based
language to describe service topologies in a cloud computing environment.

Configuration management and languages for network devices has been subject to extensive research and
many systems have been developed [CMVAMO09, EMS*07, BFO7]. The recent advancement in software-
defined networks (SDNs) has also lead to the creation of many new configuration and flow specification
language, such as Procera [VKF12], Pyretic [MRF*13], FML [HGC"09], which are also event-driven and
can change the configuration upon topology changes.

Access Control Policies
Many access control policy languages exist and we only discuss a small subset of languages which are
related to virtualized infrastructures, such as distributed and dynamic systems.
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Ponder [DDLS01] is an object-oriented formal specification language for access control policies and role
management in distributed systems. However, it does not aim at expressing high-level security goals for
infrastructure topologies and configurations. A graph-based approach for security policy specification, in
particular for access control, has been presented in [HPL98] that expresses the policy as a directed graph
with annotations. A policy graph contains a domain, which matches part of the system also given as a
system graph, and a requirement that indicates restrictions on the system by the policy.

Kagal et al. [KFJO3] present a policy language for pervasive computing, which is similar to cloud
computing environments with regard to their dynamic behavior. The language is motivated by access
control and is used to express entitlements on actions, services, or conversations of an entity, such as
an agent or user. Their implementation is based on Prolog. Further languages include XACML [OASO5],
a XML-based language for attributed and role-based access control policies, SPL. [RZFG99], an event-
based access control language, as well as Datalog-based languages [DeT02, BFG10]. Fable [SCHO08] is a
security labeling and enforcement language in the context of language-based security. They formalize
access control and static information flow policies (non-interference) as examples in Fable. Similarly;,
Fine [SCC10] is a language for access control and information flow policy specification in programs with
an automated analysis. Binder [DeT02] is an extension of Datalog to specify access control in distributed
systems. We refer to [HL12, DBSL02] for further comparison and discussion on policy languages for
access control and management.

Virtualization and Infrastructure Security

The security specification of VMs can be achieved with the concept of Virtual Machine Con-
tracts [MGHWO09], which are a policy specifications based on OVF that govern the security requirements
of a virtual machine, e.g., to specify firewall rules. Similar to OVE the objective of this language is linked
to provisioning rather than expressing high-level security goals on the topological level. On the hypervisor
level, sHype [SJV*05] is an implementation of access and isolation control for virtual machines, which
uses a XML-based access control policy!. Again, the policy only applies to one entity in the virtualized
system, i.e., the hypervisor hosting virtual machines. Xenon [MML"12] provides XML-based policies
for inter-VM communication, MAC with VM labels to implement Chinese wall, type enforcement, and
time-based rules, as well as policies on hypercall and resource usage.

On the network router and firewall level, Bartal et al. propose a model definition language [BMNWO04] to
describe security zones, network topology, and firewalling. Hinrichs proposed a policy framework [Hin99]
that expresses policies as conditions leading to actions. The conditions can test on packet headers as
well as global conditions, such as time and network load, which however require access to such live-data
through the policy framework. Furthermore, the conditions can also operate on extended state associated
with network flows, e.g., the association of users with source IPs. Actions include filtering (permit, deny),
cryptographic requirements (encrypt traffic), and QoS. CloudPolice [PYK*10] is a distributed firewall
with policies on tenant isolation, inter-tenant communication, and QoS (fair sharing, rate limiting). The
policy format resembles the policies of Hinrichs [Hin99] where conditions lead to actions. A condition is
a logical expression of predicates on properties such as sender/receiver, packet header fields, time, and
past traffic state. And action can allow, block, and rate limit matched flows.

Motivated by security in SDNs, the Flow-based Security Language [HGC*08] allows the specification
of high-level allowed network flows. Alloy [Jac02] is a first-order logic modeling language, which is
used, among other things, in network infrastructure modeling and analysis [NarO5a, NCPT06]. Alloy can
express structural properties as relations between objects as well as temporal aspects as dynamic models
with states and transitions.

Data-centered policies have been proposed in the context of cloud computing and virtualized infrastruc-
tures. Santos et al. [SRGS12] proposes policy-based sealing of data, i.e., encrypted the data under an
associated state and certain properties of the state (cf. [SS04]). The policy language is not fully defined,

1 Xen User Manual, Section 10.3.
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but the examples indicate logical expressions of equality and inequalities on state property key-value pairs.
For example, the hypervisor must be equal to CloudVisor [ZCCZ11] and the version greater or equal to 1.

Formal Verification

A large body of work exists on languages for formal verification of distributed systems, services, and
cryptographic protocols, to only name a few use cases.

TLA+ [Lam02] is a formal language to specify distributed and concurrent systems. On a high-level, the
language allows to specify an initial state of the system, state transitions, as well as invariants on states
and temporal formulas. Amazon uses TLA+, and its variant PlusCal, to specify a variety of distributed
system algorithms [NRZ*15, New14]. PROMELA [Hol91] is a language to express processes and their
message passing in order to specify and verify parallel programs. The SPIN [Hol97] model checker
consumes PROMELA specifications and can check for the absence of deadlocks, state invariants, and LTL
constraints.

In the area of cryptographic protocols specification and verification, the language Intermediate For-
mat (IF) [AVI0O3] allows to specify an initial state of a system as a set of facts, rewriting rules leading to
state transitions, and goal rules that try to match against states. ASLan [AVAQ7] is an extension of IF and
includes the specification of Horn clauses. These languages are supported by a wide range of analysis
tools, such as, OFMC [BMVO05a], SAT-MC [AC04], and other tools from the AVISPA project [ABB*05].

Summary

Policy languages for security and operational aspects of virtualized infrastructures need to incorporate
concepts from many different aspects such as configuration and deployment patterns, reachability and
isolation specification, as well as state transitions and state invariants. The goal is not to develop another
policy from scratch specifically for the context of virtualized infrastructures, but to build up and extend
existing languages.

2.2.4 Security Analysis of Infrastructure States and Changes

This section is complementary to the analysis approaches that focus on isolation and information flow
properties as previously discussed. In this section we review existing work in the areas of integrity
verification in virtualized infrastructures, vulnerability analyses of networks and systems, as well as the
security analysis and planning of configuration changes.

Integrity Verification and Enforcement in Virtualized and Cloud Infrastructures

The integrity of the infrastructure in virtualized and cloud environments is fundamental for the security of
the workloads and applications running on top. We review approaches for the verification and enforcement
of integrity in such infrastructures. In particular, we look at the different layers ranging from operating
system integrity, to VMs and hypervisors, up to the entire virtualized infrastructure. A fundamental
mechanisms in many of such systems is the usage of trusted computing, in particular, the usage of remote
attestation as offered by Trusted Platform Modules (TPMs).

On the operating system level, integrity is measured and can be verified based on remote attestation
using TPMs. For instance, the Integrity Measurement Architecture (IMA) [SZJvD04] measures not only the
boot-loader and kernel, but also the applications and its files. Building upon IMA, the PRIMA [JSS06]
system enables integrity verification on the OS-level for information flow policies.

Terra [GPC*03] was one of the first virtualization platforms that incorporates TPM to provide integrity
for VMs. In particular, a trusted hypervisor provides confidentiality and integrity to “black-box” VMs, and
enables remote attestation using the TPM. However, it only provided load-time attestation. Overcoming
the limitations of load-time integrity, the HIMA [ANSZ09] system provides run-time integrity monitoring
for VMs using a hypervisor-based measurement agent.
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A variety of approaches have been proposed that enable integrity monitoring and verification not only for
VMs but also for the hypervisor. For instance, HyperSentry [ANW*10] uses the System Management Mode
(SMM), which operates on a more privileged level than the hypervisor, to perform integrity measurements.
The measurements are triggered through an out-of-band channel using IPMI. HyperSafe [WJ10] provides
self-protection for the hypervisor and focuses on control-flow integrity (CFI). Finally, CloudVisor [ZCCZ11]
uses nested virtualization to introduce a higher privileged layer under the hypervisor for the integrity
protection.

In addition, MAC policies implemented by the hypervisor, such as sHype [SJV*05], have been analyzed
with regard to integrity [RVJ09]. They model SELinux policies as an information flow graph and try to
find violating paths.

Moving towards integrity verification and measurements of an entire virtualized infrastructure and not
only individual hypervisors or VMs. The TCCP [SGR09] system consists of a trusted hypervisor and a
trusted coordinator. Similar to Terra, the trusted hypervisor provides integrity and confidentiality for
VMs. The trusted coordinator manages a set of trusted nodes based on their attestation results. The
coordinator creates and migrates VMs only on the set of trusted nodes. Similarly, Krautheim [Kra09]
proposes a security architecture with dedicated measurement VMs that uses virtual TPMs [BCG*06]. The
CloudVerifier [SSVJ13] architecture enables end-users to verify cloud infrastructures. The system combines
multiple existing components and approaches such as the Integrity Verification Proxy (IVP) [SVJ12],
which performs remote attestation and VM integrity measurements, as well as trust anchors [SMV*10]
that establishes transitive trust in the cloud infrastructure.

Network and System Vulnerability Analyses

Ritchey et al. [RAOO] employs model checking to analyze vulnerabilities in systems and networks. They
model the following properties: 1) hosts with their vulnerabilities and current access levels from an
attacker point of view; 2) available exploits with their conditions and resulting access level escalation; 3)
a connectivity matrix for the hosts; 4) failure definitions stating invariants for the system in temporal
logic. There exists potential scalability problems with their modeling approach, for instance, the number
of exploits is fixed, they have to perform explicit connectivity checks in their exploits, and the connectivity
matrix is pre-computed for all pairs of hosts.

MulVal [OGAO5] uses Datalog for modeling and reasoning on multi-host and multi-staged vulnerabilities
in networks. The system integrates with an automated vulnerability scanner to obtain vulnerability
information of hosts and services. The scanner further provides information of the host, such as running
network services, existing client and setuid programs, file ownership and network filesystem exports.
In combination with a vulnerability database that describes the exploit range (local or remote) as well
as the exploit’s consequences, such as privilege escalation, the reasoning system can find violations of
data access policies. The system can further perform what-if analyses on hypothetical vulnerabilities.
In comparison to the work of Ritchey, MulVal uses a largely automated approach for collecting system
configurations and vulnerabilities. However, it still misses the automated extraction of hosts connectivity,
although they envision to rely on existing firewall and network analyzers.

Phillips and Swiler [PS98] propose a network vulnerability analysis based on attack graphs. The attack
graphs are automatically generated from a set of attack templates, system configuration information, and
attacker profiles. The attack templates describe individual attacks with their preconditions, state, and
actions. The attacker profile captures the attacker capabilities in order to determine the probability of
success of attacks. Finally the system configuration describe the physical network topology, although
to automatically discovered, as well as the configuration of individual hosts. The attack graph contains
weighted edges, where the weights captures success probabilities or cost of an attack, and a weighted
path finding algorithm finds the low-cost attacks.

Ammann et al. [AWKO02] provide a more efficient representation of attack trees or graphs. The nodes, or
also called attributes, describe facts on vulnerabilities and attacker access. The edges describe exploits
that require a set of attributes and produce a set of attributes. The attacker goals are a set of desired
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attributes and the analysis algorithms create a directed exploit graph, find the minimal sequences of
exploits, and obtain the required exploits to reach the goal attributes.

Tong et al. [TPT*10] study the vulnerability of general large graphs, such as computer networks, based
on structural aspects of the graph. They compute a single vulnerability value based on the adjacency
matrix of the graph, and define a shield value of a subset of nodes to capture the vulnerability resistance.

Madi et al. [MMW™"16] model virtualized infrastructures as graphs capturing the physical, virtual, and
cloud layers. Security properties, such as resource isolation and co-residency, are formalized in first-order
logic and analyzed using a CSP solver.

AWS Trusted Advisor [Ama] provides automated checks for AWS infrastructures for a variety of operational
and security properties. The security checks include for instance firewall and access control configurations.
In addition to the Trusted Advisor’s firewall configuration analysis, the analysis in [BSP*10] combines the
firewall configuration with system vulnerabilities and constructs topological attack graphs. Their policies
govern paths between two vertices in the graph with certain vulnerability rankings. Either paths should
be entirely absent or paths up to a certain vulnerability ranking are tolerated.

Dynamic Virtualized and Cloud Infrastructures

Misconfigurations in networks have been a problem in the operation of IT environments for a long
time and solutions have been proposed. Mahajan et al. [MWAOQ2] studied misconfigurations in BGP
routing configuration changes by listening to changes and assess these. Kim et al. [KBAF11] analyzed the
evolution of network configurations by mining a repository of network configuration files.

With the rise of software-defined networking, real-time monitoring and policy checking have been achieved
in these environments [KCZ*13, KZZ*13]. CloudWatcher [SG12] is a system that enforces mediation of
network flows by policy. The administrator defines a set of security network devices with their capabilities.
The security policy, called the security language interface, defines a flow condition and a set of security
devices, which need to be traversed by the flow. They propose four algorithms to find an optimal routing
path for a given flow that routes the flow over the required security devices. Bellessa et al. [BKF*11]
proposes a system called NetODESSA that performs dynamic policy enforcement in virtual networks. A
dynamic network policy governs not individual hosts, but is a high-level policy that operates on hosts
with specific characteristics. The system monitors new flows and registers a decision by the reasoning
engine based on the policy with the OpenFlow switches.

Al-Haj and Al-Shaer [AHAS13] propose a framework for modeling and analysis of VM migrations. They
model the migration as a constraint satisfaction problem, where for a given VM placement a migration
sequence needs to be found that satisfies the desired VM placement and additional constraints. The
constraints capture dependency, performance, and requirements, such as, the prevention of co-location of
conflicting VMs. They use a SMT solver to find a sequence of migration steps that satisfy the constraints.

Cloud Calculus [JED"12a] is a formal framework for the modeling and analysis of VM deployments, in
particular maintaining security invariants given by firewalls during VM migrations. The model is based on
the mobile ambient calculus, a process calculus, that models VM mobility as well as firewall configuration
changes. The preservation of policies during VM migration must ensure that packets are treated the
same before and after migration. Follow-up works, which are extending Cloud Calculus, include the
modeling and analysis of distributed firewalls as well as intrusion detection systems and VPNs. Jarraya et
al. [JED*12b] extends the Cloud Calculus to cover distributed firewalls through composition of firewall
configurations. Eghtesadi et al. [EJDP14] uses the Cloud Calculus approach to focus on the preservation
of monitoring and tunneling configurations in IDS and VPN settings.

Focusing on operational problems as part of VM migration and configuration changes, CloudInsight [AJ11]
tracks VM configuration changes and correlates changes with performance problems. They model and
monitor physical as well as virtual machine configurations through a polling agent on the hypervisor. If a
problem has been reported for a VM, the system identifies suspected change events based on the instability
of a change. The suspected events are ranked based on their sensitivity, i.e., how often an attribute
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changes, in a local (VM instance) and global view. The most likely root causes are then interactively
remediated with the help of the user.

Generalizing the analysis and planning of VM migration to changes in general, we now discuss approaches
for network and virtualization infrastructure change planning. Change planning and the analysis of
changes for network routers has been addressed by existing research [TZV*08, AWYO08], focusing in
particular on performance properties.

Hagen [Hag13, HSK12] studies the verification of change operations in the context of statically and
dynamically routed networks. They operate on objects and attributes of infrastructure components tracked
in a CMDB. A change is modeled as a set of predicates and a set of effects on those attributes. A case
study investigates the change of network routing from high-capacity to low-capacity network. They model
change operations for taking down an interface and shifting traffic. A safety constraint specifies that to
only route high-capacity traffic via high-capacity routers.

Kikuchi [Kik13, KH14] studies configuration synthesis and vulnerability analysis of dynamic virtualized
and cloud infrastructures using formal methods. For the configuration synthesis, they model four
operations: establish a physical connection, give access to another component, join a VLAN, and VM
migration. The synthesis is further guided by constraints on physical and virtual network connectivity as
well as host capacity. Given a goal condition, the Alloy Analyzer tries to find a sequence of operations
that satisfy the constraints and reach the goal condition. The initial state of the system is translated
from a configuration database (CMDB) into Alloy. With regard to operational vulnerability analysis,
Kikuchi focuses on services availability, in particular due to single point of failures, over capacity, and
load-balancer misconfigurations. They model changes to the infrastructure such as crash faults, VM
migrations, and monitor changes of a high-availability load-balancer. As part of the state transitions they
model the dependency among the components, for instance, if a physical server fails then all the VMs
running on that server will also shut down. They employ NuSMV as the model checker with CTL policies.
Majumdar et al. [MJM*16] propose a system for the proactive verification of management operations in
Cloud and virtualized infrastructures. They precompute the N-th events that may lead to a critical event
violating a policy. The system can quickly lookup if an event is critical or not, which allows the system to
scale to larger infrastructures. However, their policies do not cover transitive isolation properties.
Pearson argues for accountability in cloud computing [Peall] and highlights that tool-supported ac-
countability is essential due to the automated and dynamic nature of infrastructure clouds. We need to
automate to a large degree the monitoring and verification of dynamic virtualized infrastructures.

Summary

Integrity verification and enforcement is important to ensure a secure foundation. However integrity
verification only on the hypervisor and virtual machines covers only parts of the virtualized infrastructure.
We need to assess and monitor the integrity of the entire virtualized infrastructure. Similarly, monitoring
and planning changes in dynamic infrastructures, where most of the existing work focuses on networks
and VM migration, covers only parts of the whole picture. In particular, we need to strive for a largely
automated approach to cope with very dynamic virtualized infrastructures.
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3 Automated Information Flow Analysis

In this chapter we study the automated information flow analysis of heterogeneous virtualized infrastruc-
tures. We propose an analysis system that performs a static information flow analysis based on graph
traversal. The system discovers the actual configurations of diverse virtualization environments and
unifies them in a graph representation. It computes the transitive closure of information flow and isolation
rules over the graph and diagnoses isolation breaches from that. The system effectively reduces the
analysis complexity for humans from checking the entire infrastructure to checking a few well-designed
trust rules on components’ information flow.

3.1 Introduction

The growth of IT infrastructures and the ease of machine creation have lead to substantial numbers of
servers being created (server sprawl). Furthermore, this led to large and complex configurations that arise
by rank growth and evolution rather than by advance planning and design. Indeed, the configuration
complexity often exceeds the analysis and management capabilities of human administrators. This, by
itself, calls for automated security analysis of virtualized infrastructures. The high complexity of an
analysis is amplified when considering security properties such as isolation, because then the analysis of
individual resources must be complemented with an analysis of their composition.

In addition, virtualization providers often aim at establishing multi-tenancy, that is, the capability to host
workloads from different subscribers on the same infrastructure. Also, they provide an open environment,
in which arbitrary subscribers can register without trust between subscribers being justified. Therefore,
we need to assume that workloads as well as VMs are under the control of an adversary, and that an
adversary will use overt and covert channels in its reach.

Industry partially approaches isolation with automated management and deployment systems constraining
the users’ actions. However, these mechanisms can fail, lack enforcement, or be circumvented by human
intervention.

3.1.1 Contributions

The goal of this chapter is to study automated information flow analysis for large-scale heterogeneous
virtualized infrastructures. We aim at reducing the analysis complexity for human administrators to the
specification of a few well-designed trust assumptions and leave the extrapolation of these assumptions
and analysis of information flow behavior to the tools.

We propose an information flow analysis tool, called SAVE, for virtualized infrastructures. The tool is
capable of discovering and unifying the actual configurations of different virtualization systems (Xen,
VMware, KVM, and IBM’s PowerVM) and running a static information flow analysis based on explicitly
specified trust rules. Our analysis tool models virtualized infrastructures faithfully, independent of their
vendor, and is efficient in terms of absence of false negatives as well as adjustable false positive rates.
Our approach transforms the discovered configuration input into a graph representing all resources,
such as virtual machines, hypervisors, physical machines, storage and network resources. The analysis
machinery takes a set of graph traversal rules as additional input, which models the information flow and
trust assumptions on resource types and auxiliary predicates. It checks for information flow by computing
a transitive closure on an information flow graph coloring with the traversal rules as policy. From that,
the tool diagnoses isolation breaches and provides refinement for a root causes analysis. The challenge of
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information flow analysis for virtualized infrastructures lays in the faithful and complete unified modeling
of actual configurations, a layered analysis that maintains completeness and correctness through all stages,
and a suitable refinement to infer the root causes for isolation breaches.

Our method applies strict over-abstraction to minimize false negatives. This means that we only assume
absence of flows for components that are known to isolate. This enables us to reduce the analysis
correctness to the correctness of the traversal rules. As this method accepts an increase in the false
positive rate, we allow administrators to fine-tune the trust assumptions with additional traversal rules
and constraint predicates to obtain a suitable overall detection rate.

We report on a case study for a mid-sized infrastructure of a financial institution production environment
in Section 3.6.

3.1.2 Applications

Our technique is applicable to the isolation analysis of complex configurations of large virtualized
datacenters. Such datacenters include different types of server hardware, implementations of virtual
machine monitors, as well as physical and virtual networking and storage resources.
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Figure 3.1.: An example setup of a virtualized datacenter with an isolation policy for three virtual security
zones.

Let us consider a simplified version of such a configuration in Figure 3.1a. This simplified version includes
the following hardware: A IBM pSeries server, an x86 server, a virtual networking infrastructure providing
VLANS, and a Storage Area Networking providing virtual storage volumes. The virtual resources (networks,
storage, machines, and virtual firewalls) are depicted inside these hardware resources. Keep in mind
that sizable real-world configurations contain thousands of virtual machines and tens of thousands of
connections.

Figure 3.1b depicts a desired isolation topology for this example: we have three example virtual security
zones “Intranet”, “DMZ”, and “Internet”. Furthermore, we permit communication between Intranet and
DMZ that is mediated by a trusted guardian, such as a virtual firewall vFW,,. Similarly, firewall vFW,;
moderates and restricts the communication between the DMZ and Internet zones, respectively. The
isolation analysis must check that there do not exist components that connect two zones or are shared by
two zones, while not being trusted to sufficiently mediate information flows.

Note that we focus on validating the virtualized infrastructure’s configuration. Once we have guaranteed
that no undesired information flow exists except through the specified guardians, we would need to
employ techniques from firewall filtering analysis, e.g. [MK05, MWZ00, Woo01], to ensure that the
guardians have been configured correctly.
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3.2 A Model for Isolation Analysis

In our work, we consider overt and covert channels. Covert channels [Lam73] are hidden channels that
are not intended for information transfer at all, yet seem to be a common phenomenon in virtualized
infrastructures [RTSS09] due to shared physical resources [WL06]. Requiring the absence of all covert
channels from hypervisors, physical hosts and resources will render many resulting system impractical.
Therefore, we allow administrators to capture their risk decisions and trust assumptions with regard to
covert channels as part of user-configurable rules.

In the quest for a suitable requirements definition, we review information flow types [Lam?73, GM82,
Rus92, Man01, HY86, Rus82, KF91, Jac90] in more detail in Section 3.2.1. At this point, we note that
channel control [Rus92] captures our requirement to specify exceptions to the general zoning requirements.
Thus, we introduce a property we call structural information control that essentially lifts channel control
to topology:

Definition 1 (Structural Information Control). A security zone is a set of system nodes and a unique
color [Rus82]. A static system topology provides structural information control with respect to a set of
information flow assumptions on system nodes if there does not exist an inter-zone information flow unless
mediated by a trusted system node called a guardian.

Observe that we aim at the detection of isolation breaches (information flow traces), which renders our
approach loosely similar to model checking, and not at the verification of absence of information flow,
which would be similar to theorem proving.

3.2.1 Flow Types

Information flow analysis of multi-tenant configurations in virtualized environments analyzes overt and
covert channels.! An overt channel is intended for communication; a principal can read or write on that
channel within the limits of some access control policy.

Lampson [Lam73] introduced the term covert channel as a channel not intended for information transfer
at all. Consider a malware in VM Alice which attempts to transfer information to another instance of the
malware in VM Bob, both hosted on the same hypervisor. The malware on VM Alice can, for instance,
monopolize a resource? to transmit a bit observed by the malware on VM Bob in performance or through-
put decrease. Similar methods combined with external observation of an honest VM’s performance can
determine co-location [RTSS09]. We also consider side channels as a form of covert channels where the
sender and receiver are not colluding, i.e., the receiver can obtain information from the sender without
the sender’s knowledge. Side channels have also been exploited in virtualized infrastructures [ZJRR12].
We perceive covert channels to be a common phenomenon in virtualized infrastructures. Requiring the
absence of all covert channels from hypervisors, physical hosts and resources, will render many resulting
system impractical. Therefore, we allow administrators to specify a set of covert channel information flow
as tolerable.

3.2.1.1 Requirement Definition

Our main requirements with regard to information flow is to express isolation between security zones and
exceptions to strict isolation when mediated by a trusted guardian, such as a firewall. We informally stated
our security goal as isolation between zones, which strictly enforced corresponds to non-interference [GM82,
Gra91]. This requirement enforces that actions in one zone do not have any effect on subsequent behavior
or outputs in another zone.

1
2

This is similar to the analysis of explicit and implicit information flow on high and low variables [SM03].
Examples include launching expensive computations, flooding a cache, sending many network packets.
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The transitivity of non-interference renders it, however, unsuitable to model our setting, in which
information flow via guardians may be permitted, whereas the corresponding direct flow is disallowed.
Agreeing to the arguments of Rushby [Rus92] and Mantel [Man01], we would need intransitive non-
interference [HY86, Rus92] to start with. Whereas in transitive non-interference any action in a sequence
is forbidden that is interfering with another isolated domain. In the intransitive case, a sequence of actions
between isolated domains is allowed as long as the sequence contains only adjacent actions between
non-isolating domains. In other words, direct information flow between isolated domains is forbidden,
but flows via transitive non-isolating domains is allowed.

Another candidate is the analysis for separation, e.g. [Rus81, Rus82, KF91]: one removes all guardians
from the system and verifies that the remaining parts are perfectly separated: “if we cut the communication
channels that are allowed, then, provided there are no illicit channels present, the components of the system
will become completely isolated from one another.” [Rus81] However this approach was criticized by
Jacob [Jac90], because hidden channels that depend on known channels are not detected.

The concept of intransitive non-interference [Rus92] as well as channel control capture our requirement
to allow information flows via trusted guardians or processes. For instance, two zones should not
communicate with each other unless a guardian mediates and filters the communication. In our case,
however, we are not studying single channels, but a complex topology of channels with different forms of
guardians, where channels are captured through user-defined rules.

3.2.2 Modeling Isolation

3.2.2.1 Modeling Configurations

Our static information flow analysis is graph-based. Each element of a virtualization configuration is
represented by (at least) one vertex (VMs, VM hosts, virtual storage, virtual network). Connections
between elements are represented by edges in the graph and model potential information flow. Note
that our approach requires completeness of the edges: While not all edges may later actually constitute
information flows, we require that all relations that allow information flow are actually modeled as an
edge. The vertices of the graph are typed: our model distinguishes VM nodes, VM host nodes, storage and
network nodes, etc.

Definition 2 (Graph Model). Let T be a set of vertex types, % an alphanumeric alphabet where A C &+
is a set of vertex attribute names and D C X* is a set of attribute values. The virtualization graph model
G = (V,E,P) contains a set of uniquely labeled and typed vertices V C V := (B x T), a set of edges
E C (V x V), and a vertex properties set P C P := (A x D). A vertex v is a tuple of vertex label and type
(I,t) € V. An edge e is a pair of start and end vertices (v;, v;) € E. A partial function attr : (Vx A) - D is
defined as an attribute function which returns for a given vertex and attribute name the attribute value. The
types T form a type hierarchy with the root node type Any.

We represent complex structures of the virtualization infrastructure by sub-graphs of multiple vertices.
For instance, we construct guardians such as firewalls with complex information flow rules by a firewall
vertex connected to multiple port vertices.

Information is output at one or more information source nodes, propagates according to traversal rules
along the nodes and edges of the graph, and is consumed at an information sink.

Definition 3 (Information Sources and Sinks). For a set of vertices V, we define a set of information sources
V CV and a set of information sinks V C V. A vertex 0 € V is called information source, a vertex v € V
information sink.
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3.2.2.2 Modeling Information Flow Assumptions

A traversal rule models an assumption on information flow from one vertex type to another vertex type.
For instance, a traversal rule will specify that if a VM host is connected to a storage provider, this edge
constitutes a direct information flow and is to be traversed. Also, a traversal rule may specify that if
two VMs are connected to the same VM host, this implies the risk of covert channel communication and,
therefore, constitutes an information flow.

Definition 4 (Traversal Rules). For the set of vertex types T and the powerset &2 (IP) of vertex properties IP,
the traversal rules are a propositional function of source type t,, destination type t,, source and destination
properties subsets P, and Py, over a type relation T C (T x T), and a predicate p on properties subsets:

frp: (TxTxP(P)xP(P))— {stop,follow} :
follow if (t,,ty;) €T Ap(P,,P;)

t ’t JPs’P = 7
frp(ts, tg a) {stop if (t;,ty) €TV -p(P,Py)

We call traversal rules simple, if p is always true.

Similar to the tainted variable method for static information flow analysis, we employ the metaphor
of color propagation [Rus82]. We associate colors to information sources # € V and to vertices that
have received information flow from a certain source by the evaluation of traversal rules fy p. The total
information flow of a system is the transitive closure of the graph traversal governed by the traversal
rules fr p. This means, that the information flow from any source to any sink can be efficiently statically
analyzed by a reachability analysis between source and sink. We define graph coloring recursively.

Definition 5 (Graph Coloring). Let C be a set of graph colors, a function colors : V — 2 (C) mapping
from vertices to subsets of colors. The traversal rules fyp, graph (V,E, P), and information sources vecv
are given. An information source 0 € V is colored with colors C’ = colors(D). A typed vertex vy € V is
newly colored with colors C’ iff 1) there exists an edge e = (v,, v;) € E, 2) v, is colored with C’, and 3)
frp(ts, tq, Py, Py) = follow for v, = (-, t,) and property set P, as well as vg = (-, ty) with P;. The colors of
vertex v, are the union of existing colors and new colors: colors(v,) := colors(v,;) U C’. The default colors set
of a vertex v € (V \ V) is colors(v) := 0.

3.3 Isolation Analysis of Virtual Infrastructures

We apply the foundations from the preceding section to virtualized infrastructures. Our approach (see
Figure 3.2) consists of four steps organized into two phases: 1) building a graph model from platform-
specific configuration information and 2) analyzing the resulting model. The graph model is formally
defined in Def. 2.

| Discovery | Realization Traversal Diagnosis
Storage Area Network(s) m
g j ‘ S a ° o) Node refid1 with multiple col
» * [D] '9» Node refid2 with multiple colors...

u o) Node refid3 with multiple colors...
Intranet oo Node refid6 with multiple colors...
omz
H ntomat H O Node refid5 with multiple colors...
IBM pSeries|| Physical || KVM Virtual Node refid8 with multiple colors...
LPARs Networks Machines
o T

Figure 3.2.: Overview over the analysis flow.

The first phase of building a graph model is realized using a discovery step that extracts configuration
information from heterogeneous virtualized systems, and a translation step that unifies the configuration
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aspects in one graph model. For the subsequent analysis, we apply the graph coloring algorithm defined in
Def. 5 parametrized by a set of traversal rules and a zone definition. The assessment of the resulted colored
graph model enables a diagnosis of the virtualized infrastructure with respect to isolation breaches.

3.3.1 Discovery

The goal of the discovery phase is to retrieve sufficient information about the configuration of the target
virtualized infrastructure. To this end, platform-specific data is obtained through APIs such as VMware VI,
XenAPI], or libVirt, and then aggregated in one discovery XML file. The target virtualized infrastructure,
for which we will discover its configuration, is specified either as a set of individual physical machines
and their IP addresses, or as one management host that is responsible for the infrastructure (in the case of
VMware’s vCenter or IBM pSeries’s HMC). Additionally, associated API or login credentials need to be
specified.

For each physical or management host given in the infrastructure specification, we will employ a set
of discovery probes that are able to gather different aspects of the configuration. We realized multiple
hypervisor-specific probes for Xen, VMware, IBM’s PowerVM, and LibVirt. Furthermore, if the management
VM is running Linux, we also employ probes for obtaining Linux-specific configuration information.
Currently, we do not discover the configuration of the physical network infrastructure. However, the
framework can easily be extended beyond the existing probes or use configuration data from a third-party
source.

The configuration output produced by the discovery probes consists on one hand of the physical servers
that act as hypervisors with the physical devices that they contain. On the other hand the output capture
the virtual infrastructure of compute, network, and storage. In particular the virtual machines with
their configuration and virtual devices, the virtual network configuration with virtual switches and VLAN
configurations, as well as the virtual storage that consists of filesystem stores or block devices.

3.3.2 Translation into a Graph Model

We translate the discovered platform-specific configuration into a unified graph representation of the
virtualized infrastructure, the realization model. The realization model is an instance of the graph model
defined in Def. 2. It expresses the low-level configuration of the various virtualization systems and includes
the physical machine, virtual machine, storage, and network details as vertices.

We generate the realization model by a translation of the platform-specific discovery data. This is done
by so-called mapping rules that obtain platform-specific configuration data and output elements of our
cross-platform realization model. Our tool then stitches these fragments from different probes into a
unified model that embodies the fabric of the entire virtualization infrastructure and configuration. For
all realization model types, we have a mapping rule that maps hypervisor-specific configuration entries to
the unified type and, therefore, establishes a node in the realization model graph. We obtain a complete
iteration of elements of these types as graph nodes. The mapping rules also establish the edges in the
realization model.

This approach obtains a complete graph with respect to realization model types. Observe that configuration
entries that are not related to realization model types are not represented in the graph. This may introduce
false negatives if there exist unknown devices that yield further information flow edges. However, we
either explicitly translate configuration entries, explicitly ignore an entry, or throw a warning for any
configuration entries that has not been handled explicitly. We discuss this method and its impact on the
analysis detection rates in Section 3.4.1.

We illustrate this process for a VMware discovery. Each mapping rule embodies knowledge of VMware’s
ontology of virtualized resources to configuration names, for instance, that VMware calls storage con-
figuration entries storageDevice. We have a mapping rule that maps VMware-specific configuration
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entries to the unified type and, therefore, establishes a node in the realization model graph. We obtain a
complete iteration of elements of these types as graph nodes. The mapping rules also establish the edges
in the realization model. In the VMware case, the edges are encoded implicitly by XML hierarchy (for
instance, that a VM is part of a physical host) as well as explicitly by Managed Object References (MOR).
The mapping rules establish edges in the realization model for all hierarchy-links and for all MOR-links
between configuration entries for realization model types.

3.3.3 Coloring through Graph Traversal

The graph traversal phase obtains a realization model and a set of information source vertices with their
designated colors as input. According to Def. 5, the graph coloring outputs a colored realization model,
where a color is added to a node if permitted by an appropriate traversal rule. We use the following three
types of traversal rules (see Def. 4 and the definition of traversal rules below) that are stored in a ordered
list. We apply a first-matching algorithm to select the appropriate traversal rule for a given pair of vertices.
Flow rules model the knowledge that information can flow from one type of node to another if an edge
exists. For example, a VM can send information onto a connected network. These rules model the “follow”
of Def. 4. Isolation rules model the knowledge that certain edges between trusted nodes do not allow
information flow. For example, a trusted firewall is known to isolate, i.e., information does not flow from
the firewall into the network. These rules model the “stop” of Def. 4. Default rule means that ideally,
either isolation or else flow rules should exist for all pairs of types and all conditions, that is, for any
edge and any two types, the explicit traversal rules should determine whether this combination allows or
disallows flow. In practice, the administrator may lack knowledge for certain types. As a consequence, we
included a default rule as completion. Here, we establish a default flow rule: whenever two types are not
covered by an isolation or flow rule, then we default to “follow”. To be on the safe side, i.e., reducing
false negatives, we assume that flow is possible along this unknown type of edges.

Given this set of rules, we then traverse the realization model by applying the set of traversal rules
and color the graph according to information flows from a given source. The traversal starts from the
information sources and computes the transitive closure over the traversal rule application to the graph.
We capture the concept of trusted guardians that mediate information flow between security zones
through explicit stop rules, thereby enforcing separation, or through follow rules with sub-colors tagging
the guardian flows.

3.3.4 The Coloring Traversal Rules

The graph coloring algorithm requires a set of traversal rules that model information flows, isolation
properties, and trust assumptions. We extend the definition of our traversal rules from Def. 4 with
directionality, color transformation, as well as concrete Realization model vertex types. We will propose a
set of rules and explain their purposes, and leave the correctness argument to the security analysis in
Section 3.4.3.

Definition 6 (Directed and Color-Transforming Traversal Rule). Let F be a set of follow types {stop, follow},
T be a set of realization model types {Port, NetworkSwitch, PhysicalSwitch, ManagementQS, PhysicalDevice,
VirtualMachine, VirtualMachineHost, StorageController, PhysicalDisk, FileSystem, File, node}, T € (T xT) a
type relation, and D be a set of flow directions {—, <, <=}, where — and « denote a unidirectional, and < a
bi-directional flow. A traversal rule is a tuple (f, t,, ty,d,p,g) with f € F, (t,,ty3) € T, d € D, p is a predicate
over properties and colors of the vertices, and a colors modification function g : Z(C) x Z(P) x Z(P) —
P(C). The color modification function operates on an input color set as well as source and destination
property sets, and produces an output color set. During graph coloring (see Def. 5), a vertex v, is newly
colored with Cyq = colors(v;). With color modifications, vy is newly colored with C, = g(P;, Py, C4) such that
colors(vy) := colors(vy) U C,. By default g is the identity function on the input colors set.
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Table 3.1.: Traversal Rules

Condition

# Type Flow +Color Modification
Trust Rules
1 stop PhysicalSwitch — Port Has any vian color
2 stop ManagementOS < any
3 stop PhysicalMachine <= PhysicalDevice
4 stop VirtualMachine «= VirtualMachineHost
Network Switches
5 stop Port «» NetworkSwitch Port is disabled
VLAN

6  follow Port — NetworkSwitch Port has VLAN tagging with tag $VLAN

+ Create vlan-$VLAN
7  follow NetworkSwitch — Port Port’s VLAN tag matches color’s one

+Remove vlan-$VLAN
8  follow NetworkSwitch — Port Port is trunked
9 stop NetworkSwitch — Port Port’s VLAN tag mismatches color’s one
10 stop NetworkSwitch — Port Has any vian color

Storage
11 stop StorageController — PhysicalDisk
12 stop FileSystem — File
Default

13 follow any < any

The traversal rules specified in Table 3.1 are a ordered list of rules. In case the condition is left empty, a
true predicate is assumed, and in case the color modification is empty, g is the identity function.

Definition 7 (Matching Rule). Given a traversal rule (f,t,, ty,d,p,g) as defined in Def. 6 and a source
and destination vertex from the graph traversal: v, and v, respectively. The rule matches iff i) (type(v,) <
t,) A (type(vy) < tz) where type(v) denotes the type of a given vertex v and < a sub-type relation, ii)
d € {—, >}, iii) p(P,, P,,colors(v,),colors(v,)) = true with the property subsets P, and P; of v, and v,
respectively.

The first-matching algorithm iterates over the ordered list of traversal rules and applies the matching rule
defined in Def. 7. If the matching evaluates to true, the iteration stops and the matched rule is returned.
The matching of the traversal rules induces a function representation of the traversal rules as defined in
Def. 4, i.e., a stop or follow is returned by the matching function for a given rule tuple.

3.3.5 Case-Study Traversal Rules

The coloring traversal rules of the case study are listed in Table 3.1. Our trust assumptions are specified
in the rules Rule 1, Rule 2, Rule 3, and Rule 4. These model that VLANSs are isolated on physical switches,
that the privilege VM and the physical machine are trusted and do not leak information, and that we
exclude cross-VM covert channels (see Section 3.4.3).

Rule 5 simply stops an information flow if a network port is disabled. Rule 6 and Rule 7 model the VLAN
en- and de-capsulation of network traffic. We refer to Section 2.1.1 for more information on network
virtualization and in particular VLANs. Traffic with a VLAN tag is modeled as a new color vlan with the
VLAN tag appended, which is created in case of encapsulation and removed in case of decapsulation. This

46



models the traffic encapsulation that is performed by VLANs and other network virtualization methods. In
the case of VMware, the VLAN tag for a VM is modeled as a non-zero defaultVLAN property of the port.
Rule 8 specifies that if a port is marked as trunked, which is required in the case of VMware to allow
traffic from the VMs to the physical network interface, the VLAN traffic is also allowed to flow. Otherwise,
if the vlan color tag mismatches the port’s VLAN tag, we isolate and stop the information flow (see Rule 9).
This also applies to Rule 10, which is the default isolation rule for VLAN traffic, if one of the previous
rules did not match.

On the storage side, we model the behavior of the storage controller not to leak information from one disk
to another with Rule 11. Furthermore, the filesystem will not leak information from one file to another
(Rule 12).

The default rule Rule 13 allows any information flow that was not handled by a previous rule due to the
first-matching algorithm.

We make three observations about the traversal rules: First, administrators can modify existing and
specify further traversal rules, for instance, to relax trust assumptions or to model known behavior of
specific components. Second, traversal rules serve as generic interface to include analysis results of other
information flow tools into the topology analysis (e.g., firewall information flow analysis). Third, the
behavior of explicit guardians (see Def. 1) is introduced by traversal rules specific to these nodes. For
instance, the guardians in the exemplary Figure 3.1, Section 3.1.2, would receive a stop-rule.

3.3.6 Detecting Undesired Information Flows

The goal of the detection phase is to produce meaningful outputs for system administrators. For detecting
undesired information flows, we color a set of information sources that mark types of critical information
that must not leak. The idea of the color spill method is to introduce nodes called ‘sinks’ (see Def. 3).
Each sink is colored with a subset of the colors corresponding to the information that it is allowed to
receive. In practice, the administrator provides a list of clusters or zones that shall be isolated, and we
add/mark sources and sinks according to the isolation policy with respect to these zones. In our example
from Figure 3.1, Section 3.1.2, we would mark nodes from the zones “Intranet” (VMjg;, VMg,, V Mgs)
and “Internet” (VMjp,) as sources, and the guardians and nodes of the opposite zones (VFW,;, vFW,,) as
corresponding sinks, to determine isolation breaches in both directions. After the transitive closure of the
traversal rules, we check whether any additional colors “spilled” into a given sink. If a sink gets connected
to an additional color, then we have found a potential isolation breach. You could imagine the dedicated
color sinks as a honey pot, waiting for colors from other zones to spill over.

Observe that the detection of a color spill only indicates the existence of a breach and between which zones
(source-sink pairs) it has occurred. The color flow can be visualized and of some use for administrators to
fix the problem. In addition, we study different refinement methods for root-cause analysis, in order to
pinpoint critical edges responsible for the information flow in a industry case study (Section 3.6).

3.4 Security Analysis

In this section we analyze the different phases of our analysis framework with regard to detection rates.
For the discovery and translation phases we discuss different fault cases, where the produced graph model
differs from the actual infrastructure’s configuration and topology, and how they impact the detection
rates. Further we analyze how our method mitigates such faults. For the graph coloring and analysis
phase we reduce the correctness to the traversal rules and discuss the rules of our case study.

3.4.1 Configuration Discovery and Translation

We require that the configuration discovery of virtualized infrastructures contains all elements that might
solicit or prevent information flow (cf. Section 3.3.1). Further, we require that the translation modules of
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concrete systems are capable to correctly translate configuration elements to vertices and edges in the
realization model (cf. Section 3.3.2).

In order to analyze our discovery and translation, we consider the following fault cases where the
produced graph model differs from the actual virtualized infrastructure topology.

* Extra Vertex: The produced graph model contains a vertex that does not correspond to an element
in the actual virtualized infrastructure of the mapped type.

» Missing Vertex: An element in the actual infrastructure is not represented by a vertex in the graph
model of the corresponding type.

* Extra Edge: An edge is produced that does not represent an actual relation in the infrastructure
topology.

* Missing Edge: An edge is missing in the graph model and does not represent a relation of the
infrastructure topology.

* Incorrect Vertex Attribute: A vertex attribute can have a wrong value, where the attribute values
of the model and the configuration differ. An attribute could not be set, although the attribute is
present in the actual configuration. The attribute is set in the model, but not present in the actual
infrastructure.

In general, the impact of the fault cases on the detection rates of our analysis is the following. An extra
vertex without any additional edges has no impact on the analysis, since graph coloring requires an edge
for color propagation. An extra edge may increase the false positive rate, because an additional path of
color propagation can be established with the extra edge. However, an extra edge does not increase the
false negative rate, because an extra edge cannot remove an existing color propagation path.

The combination of an extra vertex with a modified edge set can lead to an increase in false negatives, for
instance, for the following example where the extra vertex becomes an intermediate node. The correct
graph model looks like: but an intermediate node B has been created due to a faulty discovery

or translation: . This intermediate node may now also increase the false negative rate,
because color propagation can be stopped at B but would have propagated between A and C directly. It is
important that the direct edge between A and C has been removed, which therefore also blends in the
missing edge fault case.

Missing elements can increase the false negative rate if a follow rule is not applied due to missing elements,
or false positives if a stop rule is not applied. Incorrect vertex attributes can affect the predicate outcome
of traversal rules. Depending on the traversal decision of an affected rule (stop or follow) this can increase
the false negative (follow rule) or false positive (stop rule) rate.

Fault Analysis of Discovery

Our discovery needs to mitigate the defined faults in order to not impact the detection rate of our analysis.
The essential properties of our discovery are: i) complete and unmodified view of the configuration by the
management system or hypervisor, and ii) complete configuration extraction.

The configuration view provided by the management hosts or hypervisors is critical for our discovery
phase. We assume that the software on the configuration endpoints, i.e, the management host or
hypervisor, is correct and reflects the actual state of virtualized infrastructure configuration. We assume
that the software has not been compromised, which could result in a modified or incomplete view of
the configuration. In addition the communication channel between the configuration endpoint and our
discovery software needs to be authenticated and integrity protected. Otherwise the configuration view
could be modified on the network level or provided by a malicious configuration endpoint. In practice,
the trusted communication channel is realized with either HTTPS and server certificate verification, or
SSH and host key verification.
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In order to ensure a complete extraction, our framework needs to know all the existing management hosts
and hypervisors from which to extract their configuration. This must be provided by the administrator.
The configuration endpoints typically have access control policies in place and our discovery requires
read-only access to the entire configuration. Otherwise, we may not obtain a complete configuration view.

Configuration extraction method by our discovery is to unconditionally extract the entire configuration
and only in the translation phase explicitly ignore configuration elements. In the case of API-based
discovery probes, we perform a complete iteration over the configuration elements (cf. Section 3.5.1 for
VMware). We iterate over all elements and serialize them into XML without any further processing or
modifications by the discovery probe. In the case of SSH-based probes, we either execute commands
that already return XML, such as for libvirt, and which do not require further processing. Otherwise, we
execute commands and parse their output, for instance for pSeries. The command output parsing will
provide warnings in case of parsing errors and does not silently ignore those errors, which could result in
an incomplete or incorrect configuration extraction. Furthermore, the command output is typically in a
delimiter-separated format that can be parsed robustly.

A complete view by the configuration endpoint and an unconditional and complete configuration extract
ensures that the configuration output is not missing elements and mitigates the faults of missing ver-
tex/edge. The discovery does not create new configuration elements while performing the configuration
extraction, therefore no extra vertex nor extra edge faults. We minimize the processing of configuration
output in order to mitigate the problem of incorrect vertex attributes.

Fault Analysis of Translation

The translation phase is building up on the complete and unmodified configuration output from the
discovery phase as discussed earlier.

We assume we have a correct meta model that defines the vertex types and the type relations. In a
practical implementation, we can use a statically typed language, such as Java or Scala in our case, that
allows us to define the vertex types and their required vertex attributes, including modeling relations
as attributes. Proving the correctness of the meta model itself is not feasible, but the meta model has
been developed based on domain knowledge of virtualized infrastructure configurations, analyzing the
configuration output of different systems and identifying common elements, and evaluating and evolving
the meta model in case studies.

The translation needs to iterate over all the configuration elements and either map them to vertex types
and their attributes in the model or explicitly ignore them, because an element is not relevant for our
analysis and not represented in the meta model. All other configurations elements that have not been
mapped nor explicitly ignored will generate a warning, because this could lead to a potentially missing
vertex in the graph model. The mapping from configuration element to vertex type is a simple one-to-one
mapping, e.g., a VMware VM object is mapped to a VM type in the graph model. When a configuration
element has been mapped to a vertex type in the meta model, the translation will instantiate a new vertex
of this type. The required attributes of the vertex are populated with the values from the corresponding
attributes in the configuration element with minimal amount of processing. Enforcing the population of
required vertex attributes mitigates the fault of unset vertex attributes.

Relations are either represented in the configuration output as explicit relations with an internal identifier
to another configuration element or as nested configuration elements. We translate those cases explicitly
into edges in our graph model. In a translation of a configuration element with internal identifier relation,
both the current element and the target element of the relation are translated. An edge is then created
between the two vertices. In the case of nested configuration elements, we perform a recursive translation
on the nested elements and create edges between a vertex and the produced vertices of the recursive
translation.
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3.4.2 Graph Coloring and Information Flows

The correctness of the graph coloring builds upon the faithful representation of the virtualized infrastruc-
ture configuration and topology by the graph model as discussed previously. We now show that the graph
coloring and detection of undesired information flows reduces to the correctness of the traversal rules
and the coloring of sources and sinks.

In Section 3.3.6 we introduced the detection of undesired information flows as “color spills”. More
formally, a color spill is an alarm event A for which there exists a vertex ¥ with an allowed color set C
and ¥ has been colored with a color ¢ for which ¢ ¢ C.

In order for an A event to be raised, there must exists an information source ¢ € V with € = colors(d)
and a color propagation path that colors ¥ with ¢ € € U C. We show that such a color propagation path
exists with induction over the length n back-trace graph traversal. The induction aligns with the recursive
definition of the graph coloring (Def. 5).

Initialize a set E = ) which holds our color propagation path.

Induction start n = 1: the sink ¥ is colored with ¢ because of the alarm event A.

Induction step n + 1: A colored vertex v, could only have been colored with c if

(a) v, is source ¥ with the corresponding color ¢ € C (then we are done and output E) or

(b) there exists an edge e = (V,41, V,) With v,,; = (-, t,.41, Pry1) and v, = (-, t,, p,) for which holds:
the traversal rules frp(t,1,t,, Pny1,Pr) €valuate to follow, and either v,,, is colored with ¢ or the
traversal rules’ color transformation produces ¢ € g(colors(v,,)). Accumulate E:=EuU{e}.

Assuming that our graph model is correct and contains all the required vertices, vertex types, edges, and
attributes, the recursive color propagation is only further influenced by the traversal rules. Thereby the
correctness of a color spill alarm event A reduces to the correctness of the traversal rules and their flow
decision.

Furthermore, as part of the security policy configuration, the administrator needs to assign colors to the
information sources and sinks, which establishes the isolation policy.

3.4.3 Correctness of the given Traversal Rules

The correctness of the traversal rules from Table 3.1, Section 3.3.4 remains to be shown, where we need
to analyze on two levels: i. correctness of individual rules and ii. correctness of their composition.

3.4.3.1 Individual Rules

We highlight the most important points here, followed by a detailed examination of the traversal rules.

* Network: We model correct implementation of switches for port disablement (Rule 5), and VLAN en-
and decapsulation (Rules 1, and 8, to 10).

* Physical Machine, Hypervisor, VM Stack: We claim secure isolation by management OS and physical
machine (Rules 2 and 3) as well as cross-VM isolation (Rule 4). The former rules are elementary
for virtualization security, the latter rule is arguable as it models the hypervisor’s multi-tenancy
capability and needs to be reconsidered depending on the actual environment (cf. [RTSS09, Aci07]
and discussion in the following).

» Storage: We model secure separation by physical disks as well as by the file system (Rules 11 and 12),
where the latter rule is systematically enforced by virtualization vendors (e.g., [VMwO06]) and can
be checked automatically [YTEMO6].
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We are now discussing and examining the individual traversal rules in more detail. First, let us analyze
the rules for network switches and VLAN traffic. Rule 5 assume a correct implementation of an isolation
by network switches for switched-off ports. Rules 6 and 7 establish the VLAN en- and decapsulation by
network switches and are interesting for the security analysis. The rules assign a VLAN-specific color
to information flow for in-ports with VLAN tagging and only allow information traversal at out-ports
with matching VLAN tags. This models the VLANS’ traffic separation by encryption lifted to VLAN tags
as well as a cross-session key separation assumption, standard for secure channels: messages encrypted
under one VLAN tag cannot interfere with messages encrypt under other VLAN tags and can only be
decrypted under the same VLAN tag. Rule 9 stops information flow at ports with non-matching VLAN tags
accordingly. Rule 8 has information flow follow through for trunked VLAN ports. Otherwise, we assume
that the network and physical switches securely configure and implement VLAN traffic isolation for flows
from switch to port (Rules 10 and 1). We conclude that these assumptions are natural and model correct
network behavior.

We are aware of attacks on VLANS, in particular VLAN hopping attacks, but virtual and physical switches
mitigate these attacks. For instance, VMware vswitches do not support dynamic trunking and drop frames
with double VLAN tagging, which are the cause of VLAN hopping attacks. Other switches, in particular
physical ones, can be configured as well to not be vulnerable to such attacks.

Second, let us consider the stack of physical machine, hypervisor and VMs. Rules 2 and 3 make the
assumptions that a management OS and physical host provide secure isolation and that all information
flow is accounted for explicitly. These assumptions are necessary for virtualization security, as information
leakage from these components can subvert the entire system’s security, and model standard trust
assumptions. Rule 4 is interesting as it assumes that hypervisors sufficiently separate VMs against each
other, that is, that information flow through cross-VM covert channels can be neglected. Research
results exist that highlight cross-VM covert channels, for instance [RTSS09, Aci07]. Therefore, this trust
assumption on the hypervisor’s multi-tenancy capability must be subject to thorough debate.®> Whereas
the isolation assumptions on physical machine and management OS are natural and well founded, we
conclude that the modeling of covert channels is a key trust decision for the hypervisor model.
Research on covert channels in high-assurance micro-kernels, such as SeL4 [KEH*09], has shown that
it is possible to proof the absence of storage covert channels [MMB"13], i.e., to proof a variant of
intransitive non-interference [MMB™12]. However, timing channels are more difficult and an empirical
study [CGMH14] has investigated timing channels in Sel.4 and their countermeasures. Although counter-
measures can be effective, newer processor architectures and optimization renders them less effective
and creates new timing channels. In practice, the policy decision of cross-VM flows is based on a risk
assessment by the organization and may vary depending on the hypervisor. For instance, VMware vSphere
5.0 has been certified to Common Criteria EAL4+ [VMw16] which supports the risk assessment by the
security operator.

Third, let us consider the information model for storage. Rule 11 models that the storage controllers are
capable of separating information flow to physical disks, whereas Rule 12 establishes that the file system
prevents cross file information flow through its access control enforcement, which found attention in
research and can be checked with tool support [YTEMO6].

3.4.3.2 Traversal Rules and Detection Rates

The traversal rules impact the detection rates in the following way:

* Explicit Knowledge Model: The explicit traversal rules model all and only known facts about infor-
mation flow and isolation. Thus, traversal rules focus on preventing false negatives introduced by
invalid assumptions.

3 For high-security environments, we recommend to set this rule to follow and therefore only relying on physical separation,

yet dismissing hypervisor multi-tenancy.
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* Strict Over-abstraction: When in doubt, the traversal rules must be a conservative estimate towards
information flow, that is, model a super-set of potential information flow. By that, traversal rules
will never introduce false negatives at the cost of additional false positives.

* Default-Traversal Behavior: The default rules establishing completion on the traversal rules must all
be default-follow rules, that is, evaluate undetermined cases to follow and log such results. Thus, the
completion will only introduce false positives but never false negatives.

We conclude that the traversal rule robustness principles are all lined up to fence off false negatives, yet
at the cost of false positives. Whereas this trade-off benefits a conservative security analysis, it impacts its
effectiveness, as becomes manifest in its overall detection rate.

3.4.4 Traversal Rules Coverage

We discuss the completeness and coverage of a given traversal rules set, which influence the detection
rate of our analysis.

Definition 8 (Completeness). For the set of vertex types T and a set of vertex properties P, traversal rules
frp are called complete if T, P;, Py associated to fr p cover all pairs of types in T and all properties in P.
We call a default rule a completion of incomplete traversal rules fr p, if it maps all undetermined cases to
either stop or follow. We call non-default rules explicit.

Whereas completeness is a property of a set of traversal rules, we define coverage as in how far a set of
traversal rules determines the analysis of a graph deterministically without invoking the default rule.

Definition 9 (Coverage). For the set of vertex types T and a set of vertex properties P, consider a realization
model graph G = (V, E, P) as in Def. 2 and the subset of edges E’ C E that are matched by explicit traversal
rules frp. We call the quotient of number of explicitly matched edges to total number of edges coverage:
c = I|E'l/ |E|.

A high coverage reflects that the operators have explicitly decided for pairs of infrastructure components
if information flow is possible or not. Under the assumption of the correctness of these explicit decisions,
this will decrease our false positive or negative rate. Otherwise for the implicit case, we either increase the
false positive rate with a default follow decision or the false negative rate with a stop decision. Thereby,
with a high coverage we reduce the number of implicit decisions and its implications on the detection
rates.

The traversal rules specify general assumptions on information flow in virtualized environments and,
thereby, embodies a part of the overall trust assumptions. The specification of traversal rules is therefore
orthogonal to the isolation policy of a system. Whereas our system comes with a root set of traversal rules
as base line trust assumptions, we allow users to specify multiple sets of user-defined traversal rules and
thereby user-defined trust assumptions.

3.4.5 Discussion

The transitive closure over the graph coloring securely lifts the isolation analysis to an analysis of the
traversal rules frp. Therefore, the correctness of the traversal rules becomes a make-or-break criterion for
the analysis method and impacts the detection rate.

We observe a complexity reduction: the simple traversal rules have a complexity of their type relation
T c (T x T). In practice, |T| < |V| as well as |T|*> < |E| < |V|?, with the number of properties set for
frp being small. Therefore, the complexity of analyzing the traversal rules frp is much smaller than
the complexity of isolation analysis. This allows administrators to explicitly model and thoroughly and
efficiently check their knowledge and trust assumptions about information flow and isolation.
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Because our traversal rules base on the principle of over-abstraction, that is, resort to default-traversal
in undetermined cases, the method excludes false negatives, at the cost of additional false positives.
The method is therefore always on the conservative side, even though we are well aware that the false
positive rate impacts the overall detection rate [Axe00]. We provide the general analysis framework and
offer user-defined traversal rules to fine-tune the analysis method to reduce false positives and maximize
the Bayesian detection rate. Also, we experiment with refinement methods for a subsequent root-cause
analysis to pinpoint critical information flow edges.

In principle, our tool is in a similar situation as the first intrusion detection systems. There do not exist
standardized data sets to quantify and calibrate false positive and false negative rates. We approach this
situation by obtaining real-world data from third parties and are testing the analysis method in sizable
real-world customer deployments, such as the case study discussed below.

Our framework analyzes a snapshot of the virtualized infrastructure configuration and topology at a given
point in time. Thereby we can only detect illicit information flow paths and isolation violations in a given
snapshot. Persistent information flow, e.g., through persistent storage such as a harddisk attached to a
VM, may lead to isolation violations that manifest themselves over multiple configuration snapshots. For
instance, a VM writes to its attached virtual harddisk, then the harddisk is detached from the VM and
attached to a new VM, which then reads the information stored on the harddisk. One way to solve this
problem with the approach of this chapter is to mark certain infrastructure elements as persistent, such as
a virtual harddisk. Once a graph vertex of a persistent element has been colored, this vertex will become
an information source in the analysis of the next snapshot. Another solution direction is to use a model
that tracks the changes in the infrastructure (cf. Chapter 7) and express security policies over multiple
states of the model, which we consider as future work (cf. Chapter 9).

3.5 Implementation

We have implemented a prototype of our automated information flow analysis in Java that consists of
roughly twenty thousand lines of code. Furthermore, we have additional scripts written in Python that
perform post-processing for visualization purposes and refinement for root-cause analysis. The prototype
consists of two main programs, that is, the discovery, and a processing and analysis program. The result
of the discovery is written into an XML file and is used as the input for the analysis.

3.5.1 Discovery

The functionality of the discovery and its different probes were already outlined in Section 3.3.1. There
exist different ways to implement a discovery probe. A probe can establish a secure console (SSH)
connection to the virtualized host or the management console where commands are executed and the
output is processed. Typically, the output is either XML, which is stored in the discovery XML file directly,
or the output has to be parsed and transformed into XML. As alternative to the secure console, a probe
can connect to a hypervisor-specific API, such as a web service, that provides information about the
infrastructure configuration.

We illustrate the discovery procedure with VMware as example. Here, the discovery probe connects
to vCenter to extract all configuration information of the managed resources. It does so by querying
the VMware API with the searchManagedEntities() call of the InventoryNavigator, which provides a
complete iteration of all instances of ManagedEntity, a base class from which other managed objects are
derived. We ensure completeness by fully serializing the entire object iteration into the discovery XML file,
including all attributes.
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3.5.2 Processing

The processing program consists of the transformation of the discovery XML into the realization model,
the graph coloring, and the analysis of the colored realization graph.

The realization model is a class model that is used for generating Java class files. During the transformation
of the XML into the realization model, instances of these classes are created, their attributes set, and
linked to instances of other classes according to the mapping rules (cf. Section 3.3.2). Again, we
illustrate this process for VMware. Each mapping rule embodies knowledge of VMware’s ontology of
virtualized resources to configuration names, for instance, that VMware calls storage configuration entries
storageDevice. The edges are encoded implicitly by XML hierarchy (for instance, that a VM is part of a
physical host) as well as explicitly by Managed Object References (MOR). The mapping rules establish
edges in the realization model for all hierarchy links and for all MOR links between configuration entries
for realization model types.

The traversal rules used for the graph coloring (cf. Section 3.3.3 and Section 3.3.4) are specified in
XML. Intermediate results, such as the paths of the graph coloring, can be captured and used for further
processing, i.e., visualization. We implemented Python scripts that generate input graphs for the Gephi
visualizgation framework [BHJ09].

3.6 Case Study: Virtualized Infrastructure Isolation

We launched a case study with a global financial institution for a performance evaluation and for further
validation of detection rates and behavior in large-scale heterogeneous environments. The analyzed
virtualized infrastructure is based on VMware and consists of roughly 1,300 VMs, the corresponding real-
ization model graph of 25,000 nodes and 30,000 edges. The production system has strong requirements
on isolation between clusters of different security levels, such as high-security clusters, normal operational
clusters, backup clusters and test clusters. In addition, we can work with a comprehensive inventory of
virtualized resources that serves as specification of an ideal state (machine placement, zone designation
and VLAN configuration) and as basis for alarm validation.

We examine preliminary lessons learned, where we first consider the operation of the tool itself. The
phases discovery, transformation to realization model and graph coloring executed successfully. The
visualization of all results presented a challenge as a 25,000-node/30,000-edge graph overburdened the
built-in visualization of the tool.

From a performance perspective, the discovery of the infrastructure using the VMware probe in combina-
tion with vCenter requires about seven minutes, and results in a discovery XML file with a size of 61MB.
The discovery was performed in a production environment, where network congestion and other tools
using the same vCenter can have a negative effect on the discovery performance. The overall analysis of
the infrastructure using the discovery XML file requires 53 seconds, where 46 seconds are spent on the
graph coloring. This demonstrates a reasonable performance for the discovery and analysis of a mid-sized
infrastructure, such as the one in our case study.

From a security perspective, the tool indeed found several realistic isolation breaches, which we highlighted
by adding extra edges between breached clusters. All isolation breaches constituted potential information
flows. By that we could show actual breaches between high-security, normal operational and test clusters.
We have furthermore shown that the documentation of the permitted flows was incomplete: One breach
that the system identified violated the initial policy given by the customer and was fixed by augmenting
the policy. In terms of detection rates, we initially had false positives due to missing stop rules in our rule
set, where flows via the hypervisors devices was not explicitly stopped but where allowed by the default
rule. Adding explicit stop rules increased our rule coverage and removed the false positives. Without a
reference set or tool, we could not quantify the false negatives rate.

Root-cause analysis answers the question which edges and nodes are ultimately responsible for the breach.
We found that color spill after a traversal to a new cluster may hamper the subsequent root-cause analysis.
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Figure 3.3.: Root-cause analysis of a source cluster with information flow to a sink cluster. The tree
refinement derives only the sub-graphs relevant for an isolation breach.

We therefore introduced multiple automated refinement mechanisms after the graph-coloring phase to
support the elimination of classes of potential root causes. First, we benefited greatly from a process
of elimination, that is, to exclude, for instance, that information has flown over storage edges. Second,
it was helpful to allow partial coloring, in particular to stop color propagation after detecting a breach
to another cluster. Third, we introduced a reverse flow tree that captured which path information flow
took as prelude to a breach. Figure 3.3 depicts an example of such a color tree: the tree is a sub-graph
highlighting a cross-cluster information flow path. Fourth, we further refined this tree by extracting critical
edges, such as passed VLANS, to pinpoint routes of information flow.

In conclusion, we added a refinement phase driven by reusable Python scripts. We obtained multiple
realistic alarms and could trace their root causes. The graph export to Gephi enabled the efficient
visualization of root causes and information flows for human validation.

3.7 Summary

We demonstrated an analysis system that discovers the configuration of complex heterogeneous virtualized
infrastructures and performs a static information flow analysis. Our approach is based on a unified graph
model that represents the configuration of the virtualized infrastructure and a graph coloring algorithm
that uses a set of traversal rules to specify trust assumptions and information flow properties in virtualized
systems. Based on the colored graph model, the system is able to diagnose isolation breaches, which
would violate the customer isolation requirements in multi-tenant datacenters. We showed in our security
analysis that we can reduce the correctness and detection rate to the correctness and coverage of the
graph traversal rules. Based on existing research and systems knowledge, we submit that the present
traversal rules are natural and correct.

The next step is to extend our approach towards other configuration properties, such as dependability, and
propose a more generalized analysis framework. In addition, dynamic analysis becomes more important
with increasing size of the topology and change frequency. Our current approach performs a static analysis
of a given configuration state. A dynamic analysis can be emulated by running multiple static analyses
and comparing the resulting realization models. However, a truly dynamic analysis needs to analyze small
configuration changes and efficiently determine their effect on the topology.
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4 Virtualization Assurance Language

In this chapter we study the security requirements of virtualized infrastructures and propose a practical
tool-independent policy language for security assurance. Our language proposal has a formal foundation,
and allows for efficient specification of a variety of security goals. The language is well-suited for
automated analysis, be it by model checking or theorem proving.

4.1 Introduction

The complexity of cloud configuration with respect to assuring high-level security goals is challenging. It
calls either for infrastructure-wide access control and deployment mechanisms to enforce the security
goals automatically or for verification mechanisms to check for breaches of the goals. In any case, we need
a specification language for high-level assurance goals. Such a language plays a different role in the three
cases mentioned: First in the access enforcement case, the security assurance language is an auxiliary
input to the policy decision engine that has in turn the function to ensure that the high-level assurance
goals are preserved by access requests. Second in the automated deployment case, the deployment
mechanism establishes deployment patterns that maintain the high-level security goals. Best practices and
deployment templates that incorporate some security targets are insufficient to fulfill high-level security
goals for the entire topology, because a series of local configuration transitions, which fulfill a local-view
security property, may still breach a topology-level security goal in a global view. Third in the verification
case, the high-level security goals constitute the verification target, against which the actual infrastructure
is evaluated.

There already exist specification languages for virtualized environments. These languages aim at pro-
visioning (cf. [DMT10, MGHWO09]), or network and reachability properties, e.g., firewall topology or
distributed network access control [DDLS01]. In the former case, the specification languages are restricted
to single resources, notably virtual machines, however do not have provisions for statements over the
topology. In the latter case, the languages have provisions to model the topology and properties thereof,
however they do not provide language primitives for expressing diverse security statements as needed in
virtualized infrastructures.

We derived the following three categories of interesting security statements for virtualized infrastructures
from existing research literature such as [BCP*08, OGP03, RTSS09]: operational correctness, failure
resilience, and isolation. First, operational correctness ensures that services are correctly deployed and that
their dependencies are reachable. Second, failure resilience ensures that the effects of single component
failures cannot cascade and affect many entities. Third, isolation ensures that different security zones are
properly separated and that traffic between security zones is only routed through trusted guardians.
The goal of this work is to study such high-level security properties of virtualized infrastructures and
propose a policy language to express these as goals. We call the resulting language Virtualization Assurance
Language for Isolation and Deployment (VALID).

4.1.1 Contribution

We contribute the first formal security assurance language for virtualized infrastructure topologies. More
precisely, we model such an assurance language in the tool-independent Intermediate Format (IF) [AVIO3],
which is well suited for automated analysis. We lay the language’s formal foundations in a set-rewriting
approach, commonly used in automated analysis of security protocols, with access to graph analysis
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functions. In addition, we propose language primitives for a comparison of desired and actual states. As
a language aiming at expressing topology-level requirements, it can express management and security
requirements as promoted by [DDLS01]. Management requirements in the cloud context are, for instance,
provisioning and de-provisioning of machines or establishing dependencies. Security requirements are,
for instance, sufficient redundancy or isolation of tenants. To test soundness and expressiveness of our
proposal, we model typical high-level security goals for virtualized infrastructures. We study the areas
deployment correctness, failure resilience, and isolation, and propose exemplary definitions for respective
security requirements in VALID. Further, we discuss the security requirements of a cloud deployment in a
case study and how suitable VALID is to cover them.

4.1.2 Outline

We structure this chapter in a top-down way. We first propose infrastructure-level assurance goals for
virtualized systems in Section 4.2. These goals are a diverse sample of the language scope. In Section 4.3,
we specify our requirements on the virtualization assurance language. We lay the language’s formal
foundations in Section 4.4, that is, we introduce its roots in the Intermediate Format (IF) [AVIO3] and our
virtualization specific language primitives and syntax. In Section 4.5, we propose formal specifications of
checkable attack states for the assurance goals defined in Section 4.2. Thereby, we exemplify the use of
VALID in its application domain. We discuss the coverage of our language as part of a case study with
the security requirements of a cloud deployment in Section 4.2.4. Finally, we conclude this chapter and
briefly discuss a virtualization assurance system that would incorporate VALID in Section 4.7.

4.2 Virtualized Infrastructure Security Goals

We distilled three categories of virtualized systems security goals based on common problems described in
existing research literature: Operational Correctness, Failure Resilience, and Isolation. Furthermore, for
each of these categories we identified specific goals that our language should be capable of capture and
express efficiently. Figure 4.1 depicts a simple virtualized system example that we will use to illustrate the
different security goals.

Zone A
A
HostA - MPNLink _ HostB

Zone B

Figure 4.1.: Virtualized Infrastructure Example Topology

4.2.1 Operational Correctness

Operational correctness describes that a service is both correctly deployed and reachable. It bears some
similarity to the Liveness property introduced in [AS86, Lam77] and informally states that “good things”
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will eventually happen for a service. Configuration mistakes often lead to unavailability of services in
traditional data center environments (cf. [OGP03]) and is only intensified in virtualized environments
due to their increasing complexity (cf. [BCP*08]).

Deployment Correctness

Deployment correctness means that an entity is deployed in correct operational conditions, which includes
multiple factors: i. The geographic location of the host system can have legal and technical consequences,
e.g., conflicts with privacy laws, or long end-to-end delay due to geographic disparity. ii. Properties of the
host system such as capabilities and reliability can have a significant impact on the service. iii. Furthermore,
the configuration of the host system and service has to be correct that the service can actually be run on
the host.

Reachability

Reachability means that an entity is connected to all its operational dependencies. On one hand, these
dependencies can be network reachability, i.e., the VM and physical host are actually reachable over
the network from the client-side. On the other hand, these dependencies can be resource dependencies
in general, e.g., that a VM is able to access services on other nodes. All such dependencies have to be
fulfilled in order that the operational correctness of the service is given.

4.2.2 Failure Resilience

Failures of components in a computing environment are unavoidable, but a resulting failure of services,
which are visible to the end users, can be mitigated. Such containment of component failures are pointed
out in [OGP03] and can be summarized as: failure compartmentalization due to Independent failure, and
prevention of cascading failures and limitation of failure impact due to Redundancy.

Independent Failure

Independent failure means that failures of an entity are well-contained and that dependencies of entities
with the same function will fail independent from each other. This goal nurtures a diversity of the
components deployed in the computing environment. A typical software stack in a virtualized system
consists of a hypervisor, management operating system, virtual machine system, and the service application.
A diversity in this stack, such as using different hypervisors from different vendors, will have an isolated
failure in case of faults in one of these hypervisor implementations. Independent failure can be satisfied
in the example scenario, in case the hypervisors HypA and HypB hosting the service VMs are provided by
different vendors.

Redundancy

Redundancy means that sufficient replication enforces that individual component failures will leave
overall service availability unharmed. The necessary level of redundancy depends on the desired failure
resilience for a service, which also depends on its criticality. Sufficient redundancy implies the absence of
a single point of failure (SPoF). A SPoF exists in a system, if a dependency of a service is only satisfied by
one entity in the whole system. The absence of such a SPoF entity will increase the failure resilience due
to the limitation of a cascading failure effect on dependent services. In our example, the service running
in VMA is replicated in VMA, both running on different physical machine and interconnected with two
independent network links. Path redundancy, i.e., fully disjoint paths, is also important and we observe in
our example that only a single path is available from VMC to the replicated service of VMA.
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4.2.3 Isolation

In virtualized environments, such as public infrastructure clouds, we see multi-tenancy in order to increase
the utilization of the system. Isolation compares to Safety [AS86, Lam77] that undesired information flow
do not happen. In [RTSS09], the problem of undesired information flow in public infrastructure clouds
was exposed.

Isolation of Zones

Isolation of zones means that specified security zones are isolated from each other, either by correct
association of machines to zones or by enforcement of flow isolation between any entity of different zones.
A security zone can be any set of entities in the virtualized environment. For example, a zone in the case
of tenant isolation is the set of resources used by a tenant, and zone isolation is given if the tenants do
not have access to common resources. In the illustrated example, we have defined two security zones
Zone A and Zone B that are disjoint, i.e., isolated of each other.

Guardian Mediation

Guardian mediation means that information flow between zones is allowed if, and only if, mediated by
a trusted guardian. In case information flow is allowed between the two security zones defined in our
example case, the Firewall guardian has to mediate the traffic between the zones.

Chinese Wall

The Chinese Wall isolation policy in the context of virtualization security describes that a physical host
is not serving VMs of conflicting tenants. For example, a VM of Customer A should not be hosted on
the same physical machine as a VM of competing Customer B. Such a policy can be implemented using
the sHype [SJV'05] hypervisor. VMA and VMC in our example case are virtual machines of conflicting
tenants, therefore they can not be hosted on the same physical host with regard to the Chinese wall policy.
In a simplified form this policy can also be considered as a disjoint placement policy, i.e., two tenants
should never be placed on the same host.

Secure Channels

Secure channels capture that certain information flow is only permitted over secure channels, such as
provided by VLAN or VPN in terms of network resources. A VPN link is established between HostA and
HostB in our example that acts as a secure channel.

4.2.4 Case Study: Policy Scope

We validate the scope of our policy language using a policy catalog of a telecommunications and cloud
service provider. The catalog consists of roughly 50 policies where one half capture technical security
aspects and the other half cover organizational security and processes. We consider the organizational
security policies as out of scope for our language, since we are focusing on technical aspects as part of the
infrastructure’s configuration and topology, and not on aspects such as education and documentation.
We can further divide the technical policies into two groups. The first group is concerned with aspects
such as (virtual) network topology and configuration, virtual machine security, and placement. These
policies align with the policies that we propose and formalize in this chapter. The second group of
technical policies deals with aspects such as access control, patch management, service dependencies, and
hypervisor security. Either we formalize such policies also in this chapter, e.g., service dependency, or the
policies are in line with the scope of our language, but not yet formalized.
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4.3 Language Requirements

In this section we establish the requirements for our policy language. They need to capture that the
language has to deal with a variety of virtualized infrastructure security goals as well as to enable the
automated analysis of an infrastructure with regards to the specified policies.

Formal Foundations

Virtualized environments can gain complexity beyond human oversight and therefore require tool-
supported deployment and analysis. Thus, we expect the security assurance language to have formal rigor
and be suitable for automated reasoning.

Expressiveness

There are many different security requirements imposed on virtualized infrastructures. Therefore, we
require that the security assurance language needs to be able to efficiently express a wide range of
security properties as discussed in Section 4.2. First, the language needs to have three expression layers: i.
statements about properties of resources, e.g., their IP address or functional classification, ii. set operations,
such as membership in security zones, iii. graph operations, such as existence of an information flow
or dependency path in a graph model of the topology. Second, the language needs to be reflexive and
self-contained, that is, one can define new security goals with the existing terms of the grammar and
without the need of auxiliary grammar.

We propose that the security assurance language shall express attack states, that is, states in which a
security property is violated, as well as ideal states, that is, states that assure a correct system behavior.
Whereas the first approach is suitable for more efficient security analysis (model checking) without
complete state exploration, the second approach is suitable for complete verification (theorem proving).

Tool and Standard Independence
Security policies in virtualized environments are a new field without settled predominant standards. We
require the specification language to be independent from a specific vendor’s tool or a specific standard.

Desired State Comparison

The validation of security properties of virtualized environments provides two different views on the state
of such a virtualized infrastructure: a desired state or the ideal world, as specified in the policy, and an
actual state or real world, i.e., the current configuration of the virtualized infrastructure. One specific goal
of our assurance language is to express comparisons of a desired state and an actual state discovered in a
configuration.

In some cases it is necessary to make statements about ideal elements as well as real elements in the very
same policy statement. Consider the example that a VM should be hosted on a specific host. Or in other
words, the goal is breached if the VM is hosted on a different machine than specified. This breach can
be efficiently captured using both elements from the ideal and real world in one policy statement. We
specify that we have an ideal machine hosting the VM and also a real machine hosting the same VM. To
describe the placement breach, we say that these two machines do not correspond to each other, i.e.,
the real machine is not the same as the ideal one in terms of the given properties. Therefore, if such a
statement holds, we observed a placement breach.

4.4 Language Syntax and Semantics

We propose a specification and reasoning language for security properties of virtualized environments
based on set-rewriting and conditions over states. Whereas future editions of this work will include
dynamic aspects and therefore specify state transitions (cf. Chapter 5), we confine ourselves for the policy
language to static specification of a desired state and its relation to an actual state.
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Table 4.1.: Basic type constants for virtualized infrastructures.

Type Symbol Description

node denotes the superclass of types in Ty.

set denotes a set of node nodes.

machine denotes a virtual machine.

hypervisor denotes a hypervisor on a host or VM.

host denotes a physical host.

machineOS  denotes an operating system of a virtual machine.
hostOS denotes an operating system of a physical host.
network denotes a network component

zone denotes an isolation zone of an infrastructure.
class denotes a functional class of similar components.
guardian denotes a trusted guardian node.

VALID uses a subset of the AVISPA Intermediate Format (IF) [AVI0O3] as its basis, a language for automated
deduction based on set manipulation and conditions over state expressions. We chose IF as the basis
for our work because of its capability to efficiently express goals as stated in Section 4.2, its natural
extensibility to state transition formulations, its tool-independence, and its close relation to general-
purpose automated deduction, which is given due to the strong formal foundation of IE, and its support by
many model checkers and theorem provers.

4.41 Terms and Types

We start from atomic terms, that is constants and variables. The value of a constant is fixed, e.g., the
symbol for the type machine. We call the set of all constant terms signature. A variable can be matched
against any value (of matching type). Atomic terms with different symbols have different values.

Definition 10 (Term Algebra). We define a term algebra over a signature ¥ and a variable set V. Constants
and variables are disjoint alphanumeric identifiers: constants start with a lower-case letter; variables start
with an upper-case letter. The signature ¥ contains a countable number of constant symbols that represent
resource names, numbers and strings.

We typeset IF elements in sans—serif. The atomic terms are typed (see Table 4.1):

Definition 11 (Type System). We have a set of basic types T from Table 4.1. We write t : T for a term t
having type ©. Variables can be untyped or typed. If a variable has a basic type, it can generally only be
matched against a constant with matching type. The type symbol node represents a super-type: variables of
type node can match against terms with the types in the sub-set:

Ty := {machine, host, hypervisor, machineOS, hostOS, network}

Example 1 (Constants and Variables). We exemplify the declaration of variables MA,MB,ZA,ZB of types
machine and zone as well as of a constant bankFrontEnd of type machine.

machine
: zone

bankFrontEnd, MA, MB
ZA, ZB
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Atomic terms can be combined to complex terms, for instance, with function symbols, facts, conditions
over terms and facts.

To analyze topologies, we model virtualized infrastructure configurations as graphs. Whereas the basic
graph, called Realization (cf. Chapter 3), is a unification of vendor-specific elements into abstract nodes,
we introduce further graph types to model information flow and dependencies.

Definition 12 (Graph Types). A graph type G € {real,info,depend, net} is a constant identifier for a type
of a graph model:

* real denotes a realization graph unification of resources and connections thereof.
¢ info denotes a realization graph augmented with colorings modeling topology information flow.

 depend denotes a realization graph augmented with colorings modeling sufficient connections to fulfill
a resource’s dependencies.

* net denotes a realization graph augmented with colorings modeling only the network topology infor-
mation flow.

4.4.2 Function Symbols and Dependent Terms

In order to express properties of graphs and sets we introduce a number of functions, such as a predicate
if two nodes are connected in a graph.

Definition 13 (Function Symbols). X contains a finite set of fixed function symbols.
* contains(S, E) denotes a untyped set membership relationship of a set S and element E.

» matches(I,R) denotes the correspondence between an element of the ideal world I and the real world
R. Both elements I and R must have the same type.

* edge([G := real];A,B) is a predicate, which denotes the existence of a single edge between A and B
with respect to an (optional) graph type G.

» connected([G :=real];A,B) is a predicate, denotes existence of a path between A and B, respect to an
(optional) graph type G.

 paths([G :=real];A, B) denotes the complete search of all paths between A and B, with respect to an
optional graph type G. The resulting type of the function is a set of edge pair sets.

The notation [A := v] denotes an optional argument A with default constant value v. We may specify the
graph type as a first optional argument delimited by a semi-colon.

Observe that the graph functions allow an optional graph type argument G (Definition 12), which specifies
the graph type the function is applied to.

We introduce the notion of dependent terms to model access to resource properties, such as IP address
ipadr(M) or image type imagetype(M) of a machine M.

Definition 14 (Dependent Term Function Symbols). A dependent term is a function symbol denoting the
mapping of constant values to atomic terms. % includes a fixed set of constant symbols for dependent terms.
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4.4.3 Facts, State and Conditions

VALID aims at reasoning over secure and insecure states of a cloud topology, which we model as a set of
known facts.

Definition 15 (Facts and State). A Fact represents a piece of knowledge. A state is a set of ground facts
(i.e., variable free facts). We express such sets by a dot-operator (“.”), that is, a commutative, associative,
idempotent operator, which joins all facts of a state.

Example 2 (Facts and State). We exemplify a state constituted by two facts. The first fact models that a set
za contains the machine ma as element. The second fact models that ma and mb are connected by a path.

contains(za,ma).connected(ma,mb)

Definition 16 (Condition). A condition is a conjunction of equalities and inequalities on terms. We define
the condition function symbols for equality equal(Term, Term) and less-or-equal leq(Term, Term) over
terms as well as negation not(Condition) and conjunction operator “& Condition” over conditions with
their natural semantics.

4.4.4 Goals

We define goals by specifying an abstract state which constitutes attaining the goal. For an analysis we
match a Fact set modeling the goals constrained by a conditions list against the actual analysis state.

Definition 17 (Goal). A goal state is a set of positive and negative facts constrained by a (potentially empty)
condition list. It is specified with a unique identifier, an optional graph type G and a variable list as interface.
It has the form:

goal Identifier ([G := real]; VariableList) :=
PE.NF C

where PF and NF are positive and negative fact sets and C a condition list. The graph type G determines the
graph type of unparametrized graph functions used in the goal.

In principle, it is possible to formulate ideal state goals and attack state goals. The former method often
requires an exhaustive state search to report that the goal was reached, whereas attack states can be
determined efficiently. In this paper, we focus on attack state specification in Section 4.5.

Example 3 (Goal). Let us consider a simple isolation breach attack state, which matches against a state, in
which disjoint zones ZA and ZB contain machines MA and MB respectively, and in which there exists an
information flow path between these two machines. It is determined as information flow goal by the graph
type info. Observe that the goal is defined over variables and can match against any state with constant zones
and machines fulfilling this relation and that the matching values must be different.

goal isolation_breach (info; ZA,ZB,MA ,MB) :=
contains (ZA,MA) . contains (ZB,MB) .
connected (MA, VB)
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4.4.5 Structured Specifications

Specification of our language consist of distinct sections: The TypesSection introduces all atomic terms,
which will be used throughout the analysis, with their designated types. The type section may have two
subsections for real and ideal type declarations. The InitsSection specifies initial knowledge on entities.
For instance, here one would specify properties of machines that can be used for identifying the machine,
such as the machine’s IP address as Condition over machine properties. Knowledge specified here can
be about ideal and real entities. Further it specifies the knowledge on the structure of the virtualized
infrastructure. For instance, it specifies which machine elements are associated with which isolation
zones. Note that the topology specified in this section is particularly important to model the system’s ideal
state. Finally, the GoalsSection defines attack and assurance states which are matched against analysis
results.

4.4.6 Dual Type System

One goal of our language is to express comparisons of a desired state and an actual state discovered in a
configuration. Sometimes it is necessary to make statements about ideal elements as well as real elements
in the same policy statement. For this reason, we introduce the declaration of ideal and real types, that is
a dual type system.

Definition 18 (Dual Types). For each constant or variable symbol, we explicitly declare symbol to be either
universal or restricted to the ideal or real model. A declaration in the top-level of the TypesSection means
universal, a declaration in the subsections ideal Types and real Types restricts the declaration to the respective
model. The matches(-,) fact denotes that two symbols of ideal and real world have a correspondence with
each other.

4.5 Definition and Specification of Attack States

We model the security goals from Section 4.2 as abstract attack states. In case the state is reached, a tool
will alert that the corresponding goal has been breached. This approach aims at security analysis by, for
instance, model checking.

To facilitate an actual security analysis, one complements these abstract goals with specifications of the
ideal state of the system in two areas: First, one defines the initial knowledge on entities, that is, properties
modeled as dependent terms, such as IP address. Second, one defines the knowledge of the ideal structure
of the topology as initial state, that is, facts known on contains, matches or edge relations.

4.5.1 Operational Correctness

For the operational correctness from Section 4.2.1, we model deployment breach as exemplary attack
state.

Deployment Breach
Deployment breach considers in how far VMs are placed on an incorrect hypervisor or physical machine.

Definition 19 (Deployment Breach). A deployment breach is an attack state over some virtual machine M
and two different hosts (HA, HB), in which edge(HA, M), i.e., M is hosted on HA, is a specified fact, but
edge(HB, M) was observed.
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section types:

M : machine
subsection idealTypes:

HA : host
subsection realTypes:

HB : host

section goals:
goal deploymentBreach (real; HA,HB,M) :=
not(matches(HA,HB)) .edge(HA,M) .edge (HB,M)

After declaring that HA does not match HB, the left-side of the statement contains the matched facts of
the ideal world, that is, edge(HA, M), the right side of the statement the observed fact of the real world
edge(HB, M).

Unreachability
Unreachability is an attack state that there does not exist a path between a machine and a dependent
resource in the dependency graph.

Definition 20 (Unreachability). A unreachability is an attack state over some machine M and a resource
set {RA,...,RN}, on which M depends. The attack state is triggered if no dependency path between M and
at least one of the needed resources Rl exists.

4.5.2 Failure Resilience

Single Point of Failure

Single Point of Failure (SPoF) describes a state in which a virtualized infrastructure critically depends
on any single resource. This may be, for instance, that all functionality of the same type are hosted on a
single VM host (SPoF: VM host/physical machine), that a machine has only one path through a single
router to the network (SPoF: router), or that a that data is stored only once w/o redundancy (SPoF:
storage). Formally, we specify a single point of failure as a path goal, that is, that there must not exist
only a single path to a critical resource.

Definition 21 (Single Point of Failure). A single point of failure is an attack state over any machine M
and any two different resources (RA, RB) with equivalent function. A single point of failure exists if only
path(M, RA) holds, but not(path(M, RB)) for any RB.

In general, a single point of failure exists if there is only one dependency path between a resource and its
dependencies. This requires knowledge what the dependencies of a certain resource (type) are and which
other resources can fulfill the same function. For instance, for a network single point of failure, one may
consider all network switches that connect to the Internet, independently from the ones connecting to the
Intranet. We therefore define different attack state goals for different resource types and model the goals
with functional classes of resources fulfilling the same purpose.

section types:

M : machine
NA, NB . network
C : class

section goals:

goal singlePoF_Net (depend; NA,NB,M,C) :=
contains (C,NA).contains(C,NB).connected (M,NA) .
not(connected (M,NB))

66




Interdependent Failure Behavior

Fault-tolerant computing requires independent failure behavior of all involved agents. For virtualized
infrastructures or clouds, this means that mostly that machines from the same class functional must
behave independently in face of fail-stop faults and byzantine faults or compromise. Independent failure
behavior is a very requirement for replication, most likely for high-resilience environments and critical
infrastructures or fault-tolerant configurations.

In practice, independent failure behavior means that any part of the machines stack (including the
machines functionality itself) must be implemented independently, more specifically, the machines must
be implemented independently, hosted on a different VM operating system, on hypervisors of different
type, on different VM host operating systems, on different types of physical machines. This requires a
complex logic of functional classes of all levels of the virtualized infrastructure. We call the corresponding
attack class interdependent failure behavior.

Definition 22 (Interdependent Failure Behavior). Interdependent failure behavior is an attack state over
two different machines (MA, MB) with the same functional class C and k pairs of resource and associated
class, i.e., a specific implementation, such as:

({RAL,...,RAN},CRA),...,({RK1,...,RKN}, CRK)

We have an attack if for any two machines (MA, MB) of class C, there exists a resource of the same class
they both have in their stack.

4.5.3 Isolation

Zoning & Isolation Breach

We specify an isolation analysis over machines and zones. Machines can be recognized by their properties,
for instance an IP or MAC address. By the contains rule, we express that a machine is associated with
zone (i.e., that the zone contains the machine). We define a isolation goal by a zoning breach and an
isolation breach attack state as follows.

Definition 23 (Zoning Breach). A zoning breach is an attack state over a pair of machines (MA, MB) and
zones (LA, ZB), where either MA is declared to be in ZA and not present, or MB is declared not to be in
ZB, but was found there in the real state.

section types:

MA, MB : machine
subsection idealTypes:

ZA, ZB . zZone
subsection realTypes:

ZAO, ZBO 1 zone

section goals:
goal zoningBreach_Missing (info; ZA,ZA0,MA) :=
matches(ZA,ZA0) . contains (ZA,MA) .
not(contains (ZA0,MA))
goal zoningBreach_Unknown (info; ZB,ZB0,MB) :=
matches(ZB,ZB0) .not(contains(ZB,MB)).
contains (ZBO,MB)

Isolation breach is more complex as it incorporates the existence of information flow paths between zones.

Definition 24 (Isolation Breach). An isolation breach is an attack state over any pair-wise different variable
machines (MA, MB) and zones (ZA,ZB), MA in ZA and MB in ZB, in which there exists a path between
MA and MB.
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section types:
MA, MB . machine
ZA, ZB . zZone

section goals:
goal isolationBreach (info; ZA,ZB,MA,MB) :=
contains (ZA,MA) . contains (ZB,MB) .
connected (MA, MB)

This is a straight-forward formulation of Definition 24; it simply says: “Match against any state with the
fact that some machine MA is in some zone ZA and the fact that some machine MB is in some zone ZB.

Deduce an isolationBreach on the condition that there exists any information flow path between MA and
MB.

Guardian Circumvention
Guardian circumvention is an attack state corresponding to Guardian Mediation from Section 4.2. It
means that there exist paths between machines that are not controlled by a trusted guardian.

Definition 25 (Guardian Circumvention). Guardian circumvention is an attack state over any pair-wise
different variable machines (MA, MB), guardian G and zones (ZA,ZB), MA in ZA and MB in ZB, in
which there exists a path between MA and MB, which does not contain the guardian G. The attack state
naturally extends to a set of multiple guardians.

section types:

G : guardian
MA, MB : machine
ZA, ZB ;. zone

N : node

P : set

section goals:
goal isolationBreach (info; ZA,ZB,MA MB) :=
contains (ZA,MA) . contains (ZB,MB) . connected (MA,MB) .
contains(paths(MA,MB) ,P).not(contains(P, (G,N))

4.6 Review of Language Requirements

We review how VALID fulfills the language requirements of Section 4.3.

e Formal Foundations: VALID is based on the Intermediate Format (IF) [AVIO3], which is a formal
language for set rewriting and state expressions. IF has been used for the specification and
automated analysis of security protocols.

» Expressiveness: Our language needs to provide three expression layers to reason about resource
properties as well as to express set and graph operations. VALID provides dependent terms for
resource properties, such as, ipadr for an IP address of a VM. Further, VALID introduces functions
for set membership (contains) and graph properties (edge, connected, and paths).

We evaluated VALID by modeling the virtualized infrastructure security goals (cf. Section 4.2) as
attack states in our policy language. The attack states are expressed based on the existing goal state
expressions of IF as well as using the newly defined VALID terms and functions. The goals cover
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operational and security properties, and require to reason over different parts of the infrastructure,
such as resource properties, topology, or information flow. In a case study we validated the scope of
our security goals. Thus, VALID shows to be expressible enough to cover a variety of properties on
the security, topology, and operational properties of a virtualized infrastructure.

* Tool and Standard Independence: Although VALID is based on the Intermediate Format, multiple tools
exist that can consume this format, such as, OFMC [BMVO05b], CL-Atse [Tur06], and SAT-MC [ACO08].
Therefore, VALID is not tied to a single vendor or tool. Furthermore, the expressions over states
without transitions that are modeled in IF can be translated into other formalisms, such as first
order logic, for which a larger set of tools exist (cf. Section 5.4.3).

* Desired State Comparison: In VALID we added the concept of a dual type system and the term
matches to reason about elements from the ideal and real infrastructure in the same policy goal. We
demonstrated this functionality as part of the security attack state Zoning Breach and the operational
attack state Deployment Breach. Although the existing tools do not have the concept of the dual type
system and the matches term, an intermediate compiler can translate those to nested types and an
explicit attribute matching.

4.7 Summary

We studied virtualized systems security goals in the categories operational correctness, failure resilience,
and isolation. We proposed a formal language to express such high-level security goals, which, unlike
previous work, covers topological aspects rather than just individual virtual machines. We chose the
Intermediate Format (IF) as formal foundation of our language because of its support by existing general-
purpose model checkers and theorem provers. We demonstrated the ability of our language to efficiently
express a diverse set of virtualized systems security goals by giving concrete specifications for a subset of
the studied goals.

The policy language is part of a larger virtualization assurance system that combines the extraction of the
infrastructure’s configuration with the verification of policies, specified in VALID, against the infrastructure
state. The system integrates the configuration extraction and information flow analysis of Chapter 3 with
an automated analysis and policy verification of Chapter 5.
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5 Automated Verification of Security Policies

We present in this chapter a platform for the automated analysis of virtualized infrastructures with regard
to given security policies. The platform connects declarative and expressive description languages with
state-of-the art verification methods. The languages integrate homogeneously descriptions of virtualized
infrastructures, their transformations, their desired security goals, and evaluation strategies. The employed
verification tools range from model checking to theorem proving; this allows us to exploit the different
strengths of the methods, and also to understand how to best represent the analysis problems in different
contexts.

We differentiate between multiple analysis cases. First, we consider the static case where the topology of
the virtualized infrastructure is fixed and demonstrate that our platforms allows for the analysis of the
infrastructure with regard to security policies given in VALID (cf. Chapter 4). Even though tools that are
specialized to checking particular properties perform better than our generic approach, we show with a
real-world case study that our approach is practically feasible. We finally consider also the dynamic case
where an attacker can actively change the topology, e.g., by migrating virtual machines. The combination
of a complex topology and changes to it by an attacker is a problem that lies beyond the scope of previous
analysis tools and to which we can give first positive verification results.

5.1 Introduction

Virtualized infrastructures and clouds form complex and rapidly evolving environments that can be
impacted by a variety of security problems. Manual configuration as well as security analysis often
capitulate in face of these ever-changing complex systems. The need for automated security assurance
analysis is immediate. Given the volatility of virtualized infrastructure configurations as well as the
diversity of desired security goals, specialized analysis tools—even though may having performance
advantages—have limited benefits.

As a general approach, we propose to first specify abstract security goals as desired state for a virtualized
infrastructure in a formal language. For instance, goals can be in the areas that we defined in Chapter 4:
operational correctness (e.g., “Are all VMs deployed on their intended clusters?”), failure resilience (e.g.,
“Does the infrastructure provide enough redundancy for critical components?”) or isolation (e.g., “Are
VMs of different security zones isolated from each other?”). Second, we employ a generic analysis tool
to evaluate the actual state, i.e., the virtualized infrastructure configuration and topology, against this
desired state. Thus, we obtain an automated analysis mechanism that can check the infrastructure—and
infrastructure changes—against a high-level security policy.

Such an automated analysis can cover two scopes: in the static case, we analyze a single state of a
virtualized infrastructure against the desired properties. In the dynamic case, we represent the actual
configuration as a start state and have transitions that can change this configuration. In our example,
we consider particularly changes that an intruder can make to the system (within the limits of his access
rights), e.g., by migrating VMs to other security zones. The question is whether we can reach an attack
state in this way; i.e., a current configuration of the system that violates the required security properties.
The dynamic case is an extension to the static case and requires tools that support state transitions.
From engagements with customers running large-scale virtualized infrastructures, we learned that they are
interested in a broad range of security goals. Specialized tools can be applied to a subset of these security
goals, as we already demonstrated in Chapter 3 for security zone isolation. However, a general approach is
desired that can cover this broad range of security requirements. Our goal is to establish general-purpose
verification methods as an automated tool for security assurance of virtualized infrastructures. We present
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a platform that connects declarative and expressive description languages with state-of-the art verification
methods. With such a platform, we can build upon and benefit from the variety of existing tools and
methods with their optimizations.

As desired state specification, we take security assurance goals in our formal language VALID (cf. Chapter 4)
as inputs. As actual state, we lift the configuration of a heterogeneous virtualized infrastructure to a
unified graph model. For this, we employ our tool from Chapter 3, which also computes graph coloring
overlays, that model, e.g., information flow. We develop a translator that connects these descriptions with
the various state-of-the art verification tools. The translation involves adapting the verification problem to
the domain of the respective tool, and property-preserving simplifications and abstractions to support the
verification. In particular, the translation does not add false positives or false negatives to the model.
We demonstrate that automated analysis and model-checking of virtualized infrastructures is in general
possible, and we exemplify our approach by studying three examples: zone isolation, secure migration,
and absence of single point of failure on the network level. The first example is a static case, which
determines whether machines from different security zones are connected in an information flow graph.
The relevancy of this case was confirmed in a case study with a financial institution. The second example
is of dynamic nature, and checks whether an attacker with rights to migrate VMs can reach an attack state,
either by migrating a virtual machine through an insecure network (thereby modifying the machine’s
content) or to a physical host he controls. Secure migration as an example is used to show our first
result in verifying dynamic problems. The last example considers resource dependencies and network
redundancies in the system, in order to determine the absence of single point of failures. This examples
belongs to the static case, however requires a different formalization and tools compared to the other
static case examples and in fact uses methods from the dynamic case examples.

5.1.1 Contributions

We are the first to apply general-purpose model-checking for the analysis of general security properties
of virtualized infrastructures. We propose the first analysis machinery that can check the actual state
of arbitrary heterogeneous infrastructure clouds against abstract security goals specified in a formal
language. Our approach covers static analysis as well as dynamic analysis and uses a versatile portfolio of
problem solver back-ends to benefit from their different methods.

We believe that our experiments with different modeling and analysis strategies (Horn clauses, transition
rules) are of independent interest, because the problem instances for security assurance of virtualized
infrastructures are structured differently than traditional application domains of model checkers, notably
security protocols. In addition, we gained insights on the complexity relations of different problem classes.
As a case study, we successfully analyzed a sizable production infrastructure of a global financial institution
against the zone isolation goal. We have previously analyzed this infrastructure extensively with specialized
tools and found the same problems with this generic approach. We report that our different optimizations
allowed us to improve the performance by several orders of magnitude: whereas the non-optimized
problem instances did not terminate within several hours, the optimized problem instances completed the
analysis in the order of seconds.

5.1.2 Architecture

We aim at the evaluation of an actual state against a desired state, for which we employ a tool architecture
illustrated in Figure 5.1. To specify a desired state, we formulate general security goals in VALID, our
formal language for specifying security goals of virtualized infrastructures (cf. Chapter 4).

To obtain the actual state of a virtualized infrastructure, we employ our configuration extraction tool from
Chapter 3. It comes with discovery probes for heterogeneous clouds such as VMware, Xen, PowerVM, etc.
and extracts their proprietary configuration data as inputs. It lifts the configuration data to a unified graph
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Figure 5.1.: Architecture for model checking of general security properties of virtualized infrastructures.

representation of the virtualized infrastructure (the realization model) and computes the information flow.
The tool outputs its graph representations as the actual state basis of our analysis.

We use and compare several state-of-the-art tools for automated verification. The first is the AVANTSSAR
platform1 which consists of three verification backends: OFMC [BMVO05b], CL-Atse [Tur06], and SAT-
MC [ACO08], and all have the common input language ASLan (AVANTSSAR Specification Language). We
have focused here on OFMC and made initial experiments with the other two, but due to lack of source
code availability and lack of support of Horn clauses in current SAT-MC, we could not run CL-AtSe and
SAT-MC on the large scale case study through their web-interface. The particular strength of AVANTSSAR
is that we can model a dynamic system with state transitions and check whether a property holds in
all reachable states of the system. For the simpler case of analyzing a static infrastructure, a broader
range of tools is applicable as we can express verification as deducibility problems in first-order logic.
We consider here the automated first-order theorem prover SPASS [WDF*09] and the protocol verifier
ProVerif [BlaO1]. We also made initial experiments with the SuccinctSolver [NNS02]. In general, we
expect that tools based on different methods can have complementary strengths and we can benefit from
their optimizations.

Our small-scale experiments are carried out with the OFMC model checker. The experiments consist of
a static case for zone isolation, and two dynamic cases for secure migration and single point of failure,
where we leverage the state transition system to model the dynamic behavior and to formalize path
quantification for the single point of failure case. For a case-study experiment we evaluate OFMC, SPASS,
and ProVerif.

As the key component for the actual/desired state analysis, we develop an orchestrator that takes the
graph representation of the actual state and the desired state specification in VALID as inputs and compiles
problem instances for the solver back-ends. It refines the graph representation, e.g., by abstracting from
nodes that cannot affect the analysis goal, compiles the graph to facts, and enhances this problem instance
with an analysis strategy and the desired state goals. Note that the AVANTSSAR tools accept VALID goals
directly as they consume Intermediate Format/ASLan, which is the foundation of VALID, and we translate
the goals for the other tools.

1 http://www.avantssar.eu/
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5.2 Language Preliminaries

Our formal language VALID is based on the AVISPA Intermediate Format (IF) [AVIO3] language. We
will introduce in this section the specification of rules that allow us to specify state transitions for our
dynamic cases. Further, we introduce ASLan, the AVANTSSAR Specification Language [AVA10], which
is an extension of IE One of the key extensions of ASLan is the integration of Horn-clauses that allow
for complex evaluations within every state of the transition system. This enables us to model different
analysis strategies as well as to model access control rules.

5.2.1 Rules and Goals

An IF/ASLan specification consists of an initial state, a set of rules that give rise to a transition relation,
and a set of goals that describe a set of states, usually the violations of the security properties. The
security analysis shall then determine whether a goal state is reachable from the initial state by applying
the rules and perform the state transitions. Moreover, one may add Horn clauses to specify immediate
consequences within a single state which we discuss in more detail below in Section 5.2.2.

The rules have the form PF.NF.C = RF where PF and RF are sets of facts, NF is a set of negative facts
(denoted using the operator not(+)), and C is a set of inequalities on terms. The variables of RF must
be a subset of the variables of PF. Such a rule is interpreted as follows: we can make a transition from
state S to state S’ if S contains a match for all “positive” facts of PF, does not contain any instance that
can match a negative fact of RF, and the inequalities of C do hold under the given match. The successor
state is obtained by removing the matched positive facts of PF and adding the RF under the matching
substitution.

For example, the following rule expresses that, if an intruder resides at a node N and there is an edge
from N to another node M, which is not contained in a particular zone z, then the intruder can move to

M:

intruderAt(N).edge(N,M).not(contains(z, M))
= edge(N,M).intruderAt(M)

Upon this transition, the fact intruderAt(N) is deleted, because it is not repeated on the right-hand side,
and the fact edge(N, M) remains in the graph since it is repeated on the right-hand side.

The security goals, which we already introduced in Chapter 4, are quite similar to rules in that they have
the form PF.NF.C, i.e., a rule without the right-hand side, and by the same semantics as rules characterize
a set of states, usually attack states for state-based safety properties.

5.2.2 Horn Clauses

ASLan introduced the specification of Horn clauses to the transition system to allow for specifying
immediate consequences within a state. A Horn clause contains at most one positive fact. A rule is
a disjunction of negative facts with one positive facts, which can be written as an implication of the
conjunction of only positive facts, e.g., a A b A c — x or written in ASLan as x :— a.b.c.

One of the main application is the formalization of access control policies: access rights can be expressed
as a direct consequence of other facts that express for instance that an employee is a member of particular
group. Horn clauses and the state transition system can mutually interact. First, a transition can change the
facts that currently hold, e.g., an employee changes to another group, which has immediate consequences
for the access rights via the Horn clauses. Second, the fact representing the (current) access decision can
be the condition of another transition rule, for example, where an employee requests access to a resource.
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In our context, we can also use the Horn clauses to formalize properties of the current graph. E.g., to
formalize that connected() is the symmetric transitive closure of the edge() predicate we can specify:

edge(B,A) :—edge(A,B)
connected(A,B) :—edge(A,B)
connected(A,C) :—edge(A,B).connected(B, C)

Introducing or removing edges upon transitions would automatically change the connected() relation.

5.3 Problem Classes

During our analysis, we found that the analysis goals for virtualized infrastructures can be structured
into orthogonal problem classes, and that different problem classes exhibit complexity tendencies for the
solver-backends. We consider problem classes with respect to three criteria on attack states and intruder
rules: locality, positivity, and dynamics.

5.3.1 Local vs. Global

Definition 26 (Locality). We call an attack state local if it only exhibits state facts that will be part of the
initial state, e.g., edge() and contains(). We call an attack state global if it exhibits state facts that must be
derived by an evaluation over the topology (e.g., connected()). We use these terms for the corresponding
problem instances, as well.

Secure migration—in the sense that the intruder cannot reach a state in which he controls the physical
host to which a VM was migrated—is a local problem, because the attack state will be formulated on the
edge() statement between these components. Zone isolation mentioned in the introduction is an example
of a global problem, because it needs to consider the connections through-out the infrastructure topology.
We expect that local problems can be consistently checked more efficiently than global problems. We also
conjecture a positive performance correlation between Horn clause based models and problem solvers
with local problems, and between transition based models and problem solvers with global problems.

5.3.2 Positive vs. Negative Attack States

Attack states formulated in VALID can contain positive as well as negative facts.

Definition 27 (Positivity). We call an attack state positive if it exclusively contains positive state facts.
We call an attack state negative if it contains at least one negative state fact. We use these terms for the
corresponding problem instances, as well.

The secure migration and zone isolation examples are positive problems. A negative attack state is, for
instance, the guardian mediation introduced in Chapter 4, which is fulfilled if there exists any connection
between a machine and a network that is not mediated by a guardian, such as a firewall.

All other factors equal, we conjecture that positive problems can be checked more efficiently than negative
problems. Intuitively, for positive attack states it is sufficient to find one fact/variable assignment that
matches the attack state, whereas for negative attack states all possible fact/variable assignments for the
given statement must be evaluated to conclude that no matching assignment exists.
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5.3.3 Static vs. Dynamic

We consider problems that are statically checking whether the actual state fulfills a desired state. By
introducing additional transition rules we can allow the intruder to transform the virtualized infrastructure
to reach an attack state, and therefore introduce dynamics.

Definition 28 (Dynamics). We call a problem instance static if its transition rules and Horn clauses only
include topology traversal over the initial state. We call a problem instance dynamic if it contains transition
rules or Horn clauses that model intruder capabilities to change the initial state.

Many example problems presented in Chapter 4 (machine placement, zone isolation, guardian mediation)
are static in first instantiation. As soon as we extend the intruder rules/clauses with rights to, e.g.,
start, stop or migrate machines or to reconnect networks/storage, we obtain dynamic problems. Secure
migration introduced above is a dynamic problem.

We expect that static problems can be checked more efficiently than dynamic problems. In the static case,
it is more efficient to check for several attack states than in the dynamic case. First-order logic models and
tools will be suited for static problems, whereas transition based models and tools will target dynamic
problems.

5.4 Compiling Problem Instances

This section discusses how we compile problem instances for the solver back-ends, thus, explains the
compiler which is a key component of the architecture in Section 5.1.2. The compiler receives the
following inputs: the realization model or derivatives as a graph representation of the actual state and a
VALID policy as representation of the desired state.

The success and efficiency of the solver back-ends are largely determined by the initial size of the problem
instance, by solution strategies that limit the search space complexity, and by problem formulations that
match the solvers’ capabilities. Therefore, the compiler must strive for a significant complexity reduction
while maintaining generality. Because we target sizable real-world infrastructures, the initial problem size
may easily be in the order of tens of thousands of nodes and the compiler’s pruning prove crucial.

The compiler works in two phases:

* Graph Refinement: Reducing the complexity of the graph and representing it as term algebra facts.

* Strategy Amendment: Introducing sensible analysis strategies into the problem instance that match
the solver’s strengths.

5.4.1 Graph Encoding and Refinement

A (colored) realization model input consists of high-level nodes, such as machine, and low-level nodes,
such has ipInterface, as well as edges that model the connections between these components. In general,
we aim at representing the edges of this graph as edge() facts in term algebra and give the problem
solvers means to derive graph facts, notably connected().

Real-world virtualized infrastructures consist of tens of thousands low-level components and similarly
many edges, an initial complexity that could easily overwhelm the solver back-ends. Therefore, we
support the solver back-ends in traversing these graphs efficiently by either abstracting from low-level
nodes not impacting the analysis. The graph refinement maintains analysis generality if the pruned node
types do neither occur in attack states nor in intruder or topology transformation rules/clauses.
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Figure 5.2.: Graph Simplifications for Nodes of Different Degrees.

5.4.1.1 Simplifying a Graph

Similar to star-mesh transformations employed for the simplification of electrical networks, we apply
a simplification algorithm to reduce the size of the realization model graph. Our graph simplification
algorithm preserves nodes, which are used in the analysis, and their inter-connectivity. However, it may
change the structural properties of the graph and for policies that operate on the graph structure, such as
a single point of failure policy with redundant paths, we can only perform a limited graph simplification.

Definition 29 (Optimization: Graph Simplification). Given an undirected, vertex-typed graph G = (V, E)
and a set of rules (including goals) R. We define a graph simplification function simplify that takes the
current graph G, the set of rules R, and a set of candidate nodes C(G) C V which may be removed from G.
The function produces G’ = simplify(G,R, C(G)) where for the simplified graph G’ = (V',E") holds V' CV
and |E’| < |E|.

The function is applied recursively on the simplified graph. The recursion terminates and the function returns
G if G = G’V C(G) = (. The graph simplification has to maintain the invariant that if a rule matches for
G it must also match for G’, and if a rule does not match for G it must also not match for G’. Further the
inter-connectivity of non-candidate nodes must be preserved.

A candidate is a node of graph G that may be removed from the graph in the simplification process. A
node is selected to be a candidate based on the following conditions.

* The degree of a candidate node (deg(v)), i.e., the number of adjacent nodes, must be smaller or
equal than three. For nodes with higher degrees the simplification algorithm does not reduce the
number of nodes and/or edges.?

* A node v must not appear as a constant in a rule’s positive, negative facts or term inequalities.
Further, the type T of v must not match or be a sub-type of a variable’s type used in a rule.

We differentiate between four cases for a candidate removal based on its degree.

* Removal of a single (disconnected) node (Fig. 5.2a): Single disconnected candidate nodes can be
simply removed.

* Removal of a leaf node (Fig. 5.2b): Candidates that are leaf nodes can be removed as they do not
contribute to the connectivity between non-candidate nodes.

Note that the neighbors of a candidate node need to be fully connected after the candidates removal. This leads to a
complete graph with n = deg(v) nodes and e = @ edges, where e > deg(v) if deg(v) > 3, which means an increased

number of edges.
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* Removal of an intermediate node (Fig. 5.2c): Candidates that are intermediate nodes may be removed,

but their neighbors have to be connected by an edge, in order to preserve their connectivity. The
precondition for removal is that there is no explicit edge(Node, Node) fact for the neighbors in any
rule. Otherwise a rule would match the edge that would be introduced by connecting the neighbors
of the removed intermediate node. This would lead to different rule matching between the origin
and simplified graphs, thereby violating our graph simplification invariant. Further, the neighbors
must not be connected by an edge already, otherwise our resulting graph becomes a multi-graph.

Star-Triangle (Y-A) transformation (Fig. 5.2d): The transformation from a star to a triangle topology
does not reduce the number of edges, but decrements the number of nodes by removing the star
node. We treat this as three intermediate node removals, i.e., the preconditions for the absence of
explicit edge() facts have to hold for all the star node’s neighbors.

Let us revisit the graph simplification invariants of preserving the rule matching and non-candidate node
inter-connectivity, and how our algorithm maintains these invariants.

* Rule Matching: Assume we removed a node v with type 7. A rule would not match anymore if

a (positive) fact contains v as a constant or contains a variable that matches or is a super-type of
7. However, the candidate conditions prevent the removal of exactly such nodes. The algorithm
does not introduce new nodes to the simplified graph, which could alter the rule matching between
the origin and simplified graph. Although the algorithm creates new edges, we maintain the
precondition that there must be no rule which contains an explicit edge fact that could match the
newly connected nodes.

Non-Candidate Inter-Connectivity: When a candidate node is removed we create a complete graph
between its neighbor nodes, in order to preserve their connectivity.

We now analyze the termination and complexity of the graph simplification algorithm. The termination
conditions are the following:

* No candidates left: In each iteration step of the simplification, a subset of candidate nodes are

removed from the graph, thereby reducing the set of candidates. The remaining candidates, which
have not been removed, trigger the next termination condition. Even though a candidate removal
may actually lead to a new candidate in the next round, e.g., due to a degree decrease, the overall
set of potential candidates gradually decreases, since we are not adding new nodes to the graph.

* No simplification performed: Due to our pre-conditions for candidate removal, e.g., there must be no

rule for its neighbors, there may exists candidates that are not actually removed. These candidates
thereby do not alter the graph and we terminate the simplification if no more graph changes are
performed.

In terms of complexity, we split the algorithm into the following steps:

* Pre-processing of rules: We analyze the ASLan/IF rule set and build up a data structure that allows

us to query in constant time the existence of a node type or node identifier in the rules.

Simplification: The simplification is dominated by |V|, i.e., iterating over the vertex set to determine
candidates and apply a simplification rule. Each simplification rule is constant, since they only
modify a constant and small set of edges for each candidate. The simplification is performed
recursively and the number of rounds k depends on the graph structure. In the worst case, we have
a full m-ary tree, where m > 4, as the input graph and the number of rounds is the depth of the tree.
In each round we remove the leaf nodes and thereby decrease the parent node’s degree to 1 (a leaf
node in the next round).

Termination: In order do determine if any simplifications has been performed, we compare the input
and output graphs for equality in Definition 29. In a practical implementation this would be realized
with a change flag, thereby the termination condition can be checked in constant time.
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5.4.2 Strategy Amendment for Nodes Connectivity

A major part of the solver’s strategy will depend on how the graph traversal for determining connectivity
is modeled, which we express by symmetric connected() facts derived from the edge() facts (similar to
the Horn clause specification in Section 5.2.2):

edge(A,B).not(edge(B,A))
= edge(A,B).edge(B,A)

edge(A,B).not(connected(A, B))
= edge(A,B).connected(A, B)

edge(A,B).connected(B, C).not(connected(A, C))
= edge(A,B).connected(B, C).connected(A, C)

Observe that this formulation to compute the connected() relation does not change the graph, i.e., edge()
facts are neither introduced or removed by these rules. While this is a necessity for all evaluations of the
graph in the dynamic case, in the static case, we can formalize evaluation procedures that do change the
graph, for instance rules that remove edges from the graph as soon as they were visited by the evaluation.
However this is only applicable to static attack states that argue over connected() facts and not edge()
facts at the same time (such as zone isolation). Our benchmarks show that such changes can improve the
performance of our zone isolation example, however only slightly.

We propose an additional translation, which reduces the state complexity significantly. In this case, we
imagine an intruder tries to traverse the topology from some start-point and “obtain” nodes he has access
to. This avoids the binary fact connected and instead uses a unary fact intruderHas to represent all
members of the largest connected sub-graph that contains the intruder start point.

The transition rules are as follows:

intruderHas(A).edge(A,B).not(intruderHas(B))
= intruderHas(A).intruderHas(B).edge(A, B)

intruderHas(A).edge(B,A).not(intruderHas(B))
= intruderHas(A).intruderHas(B).edge(B,A)

For large graphs, the restriction of analyzing such chunks rather than the full connected-relation means
substantial savings: roughly speaking, the number of derivable facts is in the worst case linear for the
intruderHas strategy, while the number of connected facts is quadratic. This optimization requires,
however, that we have to select one start point for the intruderHas() computation and thus get the
verification of isolation from other zones only for that selected start point. In case a connected(A, B) fact
is used in a security goal, we can translate it to intruderHas(A).intruderHas(B).

Depending on the used solver or back-end, the evaluation which nodes the intruder can obtain can either
be expressed by a means of transition rules (as above) or in first-order logic using Horn clauses. We
showed the specification of the connected(A, B) using Horn clauses already in Section 5.2.2. Similarly,
the intruderHas strategy can be specified with Horn clauses as shown in the following:

intruderHas(B) :— edge(A,B).intruderHas(A)
intruderHas(B) :— edge(B,A).intruderHas(A)

In addition to the graph analysis model, we need to introduce intruder rules for the dynamic analysis to
model his capabilities to modify the infrastructure. They are highly dependent on the scenario, but can
easily be modeled by introducing new facts as well as transition rules or Horn clauses. We exemplify this
by modeling the secure migration problem in Section 5.5.
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5.4.3 Encoding Static Problems into FOL

In case of static problems, such as zone isolation, we do not need to consider transition systems but
can rather encode the problem into “static” formalisms like first-order logic (FOL) and alternation-free
least fixed point logic (ALFP) for which mature tools exists. We now show that we can effectively use
such tools as an alternative to the model-checking approach in the static case. We study the use of the
SuccintSolver for (ALFP) [NNS02], the FOL theorem prover SPASS [WDF09] and the protocol verifier
ProVerif [BlaO1].

The example of zone isolation can be expressed as an initial set of facts representing the graph structure,
a set of Horn clauses expressing the graph traversal as shown in the previous section and in Section 5.2.2,
as well as a predicate that an intruder can reach a machine in another different security zone.

The SuccintSolver [NNS02] is an effective tool for computing the least fixedpoint, i.e., all facts that are
derivable by the ALFP clauses from the given facts, of an ALFP specification.

The next tool we use is the generic first-order theorem prover SPASS [WDF*09] which is based on
resolution. A challenge is that we want a model of the symbols where different constants always represent
different elements which cannot be enforced directly. In our zone isolation breach we require that VMs of
different security zones are connected. For the inequality of zones, we need to specify this as axioms for
zones.

Concretely, the following listing shows the zone inequality definitions for three zones, the starting point
of the intruder traversal at cluster with id refid1, intruderHas traversal, and the zone isolation policy. We
omitted parts of the problem instance files that specify the full graph.

formula(intruderHas(node(cluster(refid1)))).
formula(not(equal(zonel,zone2))).
formula(not(equal(zone3,zonel))).
formula(not(equal(zone3,zone2))).
formula(forall ([A,B],implies(and(intruderHas(A) ,edge(A,B)),intruderHas(B)))
formula(forall ([A,B],implies(and(intruderHas (A),edge(B,A)),intruderHas(B)))
end_of_list.
list_of_formulae(conjectures).
formula(exists ([ZA,ZB,MA,MB],

and(contains(zone(ZA) ,node(vmachine (MA))),

and(contains(zone(ZB) ,node(vmachine (MB)))
).
).

).
).

and(intruderHas (node(vmachine (MA)))

and(intruderHas (node(vmachine (MB)))

and(not(equal(ZA,ZB)),true)))))
.end_of_list.

Listing 5.1: SPASS input file with intruderHas strategy and zone isolation goal.

We finally consider the ProVerif tool [BlaO1] which is also based on resolution but dedicated to security
problems formulated by Horn clauses, and therefore often faster than SPASS. Like in SPASS, we have to
axiomatically introduce here the inequality of zones.

Static Problems beyond FOL

Consider the goal of the absence of single point of failures for network links, i.e., that a network contains
sufficient redundancies, so that failure of a single node does not disrupt communication.> More formally,
let us consider a network and the dependability constraint depend(n;, n,) between two nodes n; and n,.
Then we require that there is are at least two disjoint paths (using disjoint nodes) in the network from
n; to n,. Even in the static case (when the network topology cannot change) this problem, i.e., paths
quantifications, is beyond the expressiveness of first-order logic, because we want to quantify over a set of
sets.

3 In Chapter 4 we considered a different form of single point of failure that can be expressed as a goal state: when a node

depends on a particular resource, then it is connected to more than one node to provide that resource.
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As a consequence, we cannot use the solvers SPASS, ProVerif, and Succinct Solver. Also, the standard
approach to specify the security property as a set of VALID or ASLan goals (even using Horn clauses to
evaluate the graph) is not applicable, because that would also be FOL expressible relations. However, we
can specify a transition system in ASLan to express a game that has a solution (expressed as a set of goal
states) if and only if there exists no single point of failure. We demonstrate this game for the absence of
single point of failure in Section 5.5.3.

5.5 Model-Checking a Virtualized Infrastructure

In this section, we study three example problems, namely zone isolation, secure migration, and absence
of single point of failure, and demonstrate how these problems can be analyzed using a model checker.
We apply model checking on small infrastructure examples to demonstrate the approach for different
problems, and we will analyze a large-scale infrastructure with regard to zone isolation in Section 5.6.
We structure this section analogously to the architecture Section 5.1.2 where for each example problem,
we first specify the desired state in VALID or ASLan goals along with the required language primitives.
Second, we introduce the actual state, that is the infrastructure examples we analyze. Third, we discuss
specialties of compiling the corresponding problem instance, the problem solvers employed and their
output for the analysis.

5.5.1 Zone Isolation

We consider the following scenario to illustrate the zone isolation security goal: an enterprise network
consists of three security zones, namely a high security zone containing confidential information, a base
security zone for regular IT infrastructure, and a test security zone. Any machine in one zone should not
be able to communicate with a machine from a different zone, and network isolation is realized using
VLANS.

Desired State

To have the solvers check violations of zone isolation, we define an attack state isolation_breach, which
checks whether any two machines of any two different security zones are connected.

Definition 30 (Goal: Zone Isolation). The isolation breach attack state matches if any two disjoint zones
ZA and ZB contain machines MA and MB respectively, and in which there exists an information flow path
between these two machines denoted by connected. It is determined as information flow goal by the graph

type info.

goal isolation_breach (info;ZA,ZB,MA MB) :=
contains (ZA,MA) . contains (ZB,MB) .
connected (MA,MB) & not(equal(ZA,ZB))

Furthermore, the VALID policy requires a specification of the membership of machines to specific zones.
For example, contains(high,vm1) denotes that vm1 is part of the high security zone.

Actual State

SAVE (cf. Chapter 3) discovers the given infrastructure and captures all low-level configuration details
and resource associations. SAVE performs an information flow analysis with the different security zones
as information sources and produces an information flow graph for the infrastructure.
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Model-Checking

Based on the actual state provided by SAVE, our compiler will generate a representation of the (potentially
refined) information flow graph in edge() facts and node constants. Since we are dealing with a static
problem, we use the efficient intruderHas modeling for graph traversal, and transform the goal accordingly.
The output is ASLan for OFMC and a variety of first-order logic languages used by the static problem
solvers.

Suppose the VLAN identifier of a machine ym2 in the test zone was misconfigured and is identical to the
VLAN ID of a machine vm1 from the high security zone. OFMC will provide us with such an attack state
(reduced for brevity) indicating a zone isolation breach as shown in Listing 5.2.

SUMMARY
UNSAFE

PROTOCOL
zone_isolation. if

GOAL
isolation_breach

% contains(zone(high), node(machine(vm1)))
% contains(zone(test),node(machine(vm2)))
% intruderHas (node(machine(vm1)),i)
% intruderHas (node(machine(vm2)),i)

Listing 5.2: OFMC Output for Zone Isolation Breach

5.5.2 Secure Migration

Secure migration is a problem often encountered in practice which was also highlighted by Oberheide et
al. [OCJO08]. Secure Migration is an interesting problem as its very nature requires a dynamic modeling.
However, we do not claim to solve it completely with this work, as is a complex endeavor in which many
factors (network and storage connections, VLAN associations, correct configuration of VMs, machine
contracts, etc.) need to be considered. Still, we want to demonstrate the principles of dynamic analysis
with a simplified example of this problem class. We leave a full-scale analysis of secure migration of a
production system for future work.

We consider the topology depicted in Figure 5.3 for our scenario: five hosts, where HostC is controlled
by a malicious administrator, are connected to two networks. The malicious administrator can migrate
virtual machines between hosts as indicated by the migrate edges. There is one VM running on host HostA.

migrate

migrate

‘
L e
migrate HostD ] [ HostE ]
S~—T
migrate

Figure 5.3.: Migration Scenario Topology

Desired State

We study two exemplary instantiations of the problem of secure migration. The attack state vm_breach
asks whether the intruder can migrate a virtual machine from a secure environment to a physical host to
which he has root access (in order to perform attacks demonstrated by Rocha et al. [RC11]). The attack
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state insecure_migration asks whether an intruder can migrate a VM through an insecure network in
order to manipulate the VM (cf. attacks demonstrated by Oberheide et al. [OCJ08]).

We define these goals in VALID, for which we introduce the unary facts intruderAccess() and root(), and
the binary fact migrate(). These model the intruder’s access capability set of root access (typically to a
given host) and machine migration between two hosts. These facts have the following signature:

intruderAccess : fact — fact

migrate : host x host — fact

root : node — fact
The fact intruderAccess() models the set of all access rights the intruder has, that is, it has the semantic
that any term enclosed by the fact belongs to the intruder’s access capabilities. The fact root() models

administrator rights on the enclosed node.
We model virtual machine migration in the following way.

Definition 31 (Migration). The capability of migrating a VM MA from host HA to HB is expressed as Horn
clause canMig that incorporates the intruder access to migrate between these two hosts, that both hosts are
connected to the same network NA, and host HA is running the VM.

Migration is a transition rule that removes the association of a VM MA to a host HA, and adds an association
to a new host HB in case fact canMig matches.

canMig(MA,HA,HB,NA) :— edge(HA, MA).edge(HA,NA)
.edge(HB,NA).intruderAccess(migrate(HA, HB))

edge(MA,HA).canMig(MA,HA,HB) = edge(MA, HB)
The goals are defined in VALID in the following way:

Definition 32 (Goal: VM Security). The VM breach attack state matches if there is a root() fact on a host
HA in the intruder’s access capability set and a VM MA being connected to the host.

goal vm_breach(real ;HA,MA) :=
intruderAccess(root(HA)).edge(MA, HA)

Definition 33 (Goal: Secure Migration). The attack state for insecure migration is the following. The
intruder can migrate a VM MA from host HA to HB, and he has root access to a host HC that is connected
to the same network.

goal insecure_migration(net;HA,HB,HC,MA NA) :=
canMig (MA, HA, HB).
intruderAccess(root(HC)).
edge(HA, NA).edge(HB, NA).edge(HC, NA)

If the intruder has root access to a host connected to the migration network, he can mount network attacks,
such as ARP spoofing, in order to create a man-in-the-middle attack and intercept the VM migration.

Actual State
We model the access capabilities of the intruder for our scenario in the following way.

¢ intruderAccess(root(hostC))

* intruderAccess(migrate(hostA, hostB))
¢ intruderAccess(migrate(hostA, hostD))
¢ intruderAccess(migrate(hostB, hostC))
* intruderAccess(migrate(hostD, hostE))

The network information flow graph for the scenario is generated by SAVE.
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Model-Checking

Unlike in the previous static example, we had to explicitly model the dynamic behavior of the intruder,
i.e., machine migration, and its effects on the infrastructure. We modeled that as transition rules with
restrictions based on access privileges of the intruder. Since we are dealing with a dynamic problem, we
have to use a tool from the AVANTSSAR tool chain, for instance we use OFMC.

OFMC found the following attack states (reduced for brevity) for our scenario. First for VM breach where
a VM is migrated to an intruder controlled host. As shown in Listing 5.3, OFMC finds this attack state for
vm_breach due to the migration of VMA to HostB, and then to HostC. Second, in Listing 5.4 an attack state
for insecure_migration is reached by the migration of VMA to HostD, then to HostE and intercepted by
HostC due to the connection to the same network NetB.

INPUT
migration. if

SUMMARY
ATTACK_FOUND

GOAL: vm_breach

% Reached State:

%

% intruderAccess(root(node(host(hostC))),i)

o edge(node(machine(vma)).node(host(hostC)),i)

R

Listing 5.3: OFMC Output for VM Breach

INPUT
migration. if
SUMMARY
ATTACK_FOUND
GOAL: insecure_migration

% Reached State:

%

% canMig(node(machine(vma)).node(host(hostD)).node(host(hostE)),i)
% intruderAccess(root(node(host(mc))),i)

% edge(node(host(hostD)).node(network(netB)),i)

% edge(node(host(hostE)).node(network(netB)),i)

% edge(node(host(hostC)).node(network(netB)),i)

S

o

o

S

Listing 5.4: OFMC Output for Insecure Migration

5.5.3 Absence of Single Point of Failure

We consider the topology illustrated in Figure 5.4 for our scenario to demonstrate the absence of single
points of failure for network links. We have two hosts that are depended on each other and connected
through a combination of three networks.

Figure 5.4.: Single Point of Failure Scenario Topology
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Desired State

The goal of the absence of single point of failure for network links is not expressible in FOL, VALID or
ASLan goals as discussed in paragraph 5.4.3. Therefore, we construct a game using transitions in ASLan
that has a solution if and only if there exists no single point of failure.

This game works as follows for a single dependency constraint depend(n, n,) (if there are several such
constraints, one must start each as a separate game). We have two phases in which sets S; and S, of
nodes are collected. Note that this covers the case for two-way redundancy. In the first phase we start
with S; = {n;} and follow edges from a member of S; to a non-member that we then add, until we have
reached n, and start the second phase. We begin similarly with S, = {n;} and follow an edge from a
member of S, to a node that is not part of either S; and S, that we add to S, until we have reached n,.
Then S; and S, represent nodes for two disjoint (except for start and end nodes) paths from n; to n,.
Since the transition system allows to choose the edge to follow, the goal state n, € S, is reachable if and
only if such disjoint paths exist.

In the following are the transition rules modeling this game. The first one starts the first phase, the second
one traverses nodes in the first phase, and the third one terminates the first phase and starts the second
phase. The fourth rule traverses nodes in the second phase.

not(roundl).not(round2).depend(A, B)
= roundl.depend(A,B).inS1(A)

roundl.depend(A,B).inS1(X).edge(X,Y).not(inS1(Y))
& not(equal(Y,B))
= roundl.depend(A,B).inS1(X).inS1(Y)

roundl.depend(A,B).inS1(X).edge(X,B)
= round2.depend(A,B).inS1(X).inS1(B).inS2(A)

round2.depend(A, B).inS2(X).edge(X,Y).not(inS1(Y))
not(inS2(Y)) & not(equal(Y, B))
= round2.depend(A,B).inS2(X).inS2(Y)

Here we use special facts roundl and round2 to separate the different phases and inS1 and inS2 to
denote the members of S; and S,.

The following goal is reached when the second phase terminates, and thereby identified a second disjoint
path between A and B.

goal spof_absence (A,B,X) :=
round2.depend(A,B).inS2(X).edge(X,B)

Edge symmetry is not handled by the previously shown transitions and the goal, and has to be modeled
explicitly with another set of transitions and a goal. For our scenario, we also have to specify the
dependency between HostA and HostB using the depend term.

With regard to termination, in both rounds the edge set is reduced by removing the traversed edge, and
the vertex sets of visited vertices is expanded on each edge traversal with the unvisited destination vertex.
The termination happens when: 1) no edges left to traverse, 2) all reachable nodes have been visited in
either round1 or round2, or 3) the destination vertex is B when in round2. Effectively we are performing
two DFS traversals starting from node A that stop when reaching node B. Whereas the first one triggers
the second one upon reaching B and the second one leads to the goal state when reaching B.
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Actual State

The network information flow graph for the scenario is generated by SAVE. The graph simplification must
not perform star-triangle simplifications as these change the structural properties of the graph. In fact
they remove possible single point of failures, i.e., stars, and replace with with a redundant mesh.

Model-Checking

Since we are dealing with a static problem that cannot be encoded in first-order logic, we modeled this
goal in such a way that an attack state is actually a satisfaction of the goal, namely there are no single
point of failures. This is contrary to the previous two examples, where an attack state always denoted a
breach of a security goal.

For our scenario, the model-checker OFMC will not reach an “attack state”, therefore the infrastructure
contains a single point of failure. Removing the SPoF: Now we consider connecting HostB also to NetB,
therefore we get a second disjoint path from HostA to HostB. OFMC produces the output in Listing 5.5
showing the two disjoint paths (reduced to inS1 and inS2 facts, and reordered):

INPUT
spof.if
SUMMARY
ATTACK_FOUND
GOAL: spof_absence

% Reached State:
%

% inS1(node(host(hostA)),i)
% inS1(node(network(netB)),i)
% inS1(node(host(hostB)),i)
% inS2 (node(host(hostA)),i)
% inS2 (node(network(netA)),i)
% inS2 (node(network(netC)),i)

Listing 5.5: OFMC Output After Removing the SPoF: Absence of Single Point of Failure

5.6 Case Study for Zone Isolation

In this section, we analyze a real and large-scale production environment of a global financial institution.
The infrastructure consists of approximately 1,300 VMs and its realization model modeling all networking
and storage resources consists of approximately 25,000 nodes and 30,000 edges. The infrastructure is
divided into several security zones, each containing multiple clusters, and models networking up to Layer
2 separation on VLANs and storage providers up to separation on file level. We have already analyzed
this virtualized infrastructure extensively with specialized tools and know which attack states to expect.
Given the large initial size of the actual state, this case study provides a suitable test environment for the
subsequent performance analysis.

Whereas our compiler translates the problem instances to the different static and dynamic problem solvers
introduced in Section 5.1.2, we focus the performance evaluation on three tools: SPASS and ProVerif
for the static case, and OFMC for both the static and dynamic case. We analyze various optimization
and modeling techniques introduced in Section 5.4 to establish their effects in practice. We have also
performed initial experiments with SAT-MC and CL-AtSe, but could not apply them to the large case
study. The reason is that the tool versions which support ASLan with Horn clauses were only available as
third-party hosted web services, which is problematic to use given the sensitive nature of our case study
data.

We are focusing in this evaluation on two specific clusters (we call them Cluster and Cluster2) and their
corresponding information flow graphs, for which we know that Cluster1 has an isolation problem, where
VMs of different security zones are able to directly communicate due to a VLAN configuration error, and
Cluster2 is safe in terms of VM zone isolation.
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Graph Refinement

We first measure the simplification of the information flow graphs for the different clusters in terms of the
number of edges and nodes. The information flow graph of Clusterl consists of 14386 nodes and 17817
edges. We achieve a reduction of the graph by 13428 nodes and 16860 edges, resulting in a graph with
only 958 nodes and 957 edges. The algorithm performs this simplification in 0.18 seconds. Cluster2 has a
smaller information flow graph with 6218 nodes and 7543 edges. The graph reduction completes within
0.06 seconds and results in a graph with 359 nodes and 358 edges.

Zone Isolation

We are now evaluating the analysis of the zone isolation goal for the large-scale infrastructure. For
our evaluation, we consider all analysis cases for the following parameters: attack/safe, simplified/non-
simplified graph, and different graph traversal models. Attack denotes an isolation breach and Safe
denotes secure isolation.

For the graph traversal modeling using connected() in form of Horn clauses or transition rules, all tools
we are evaluating either run out of memory (OFMC) or do not terminate within our time limit of 4 hours.
We therefore focus our detailed performance analysis on our intruderHas graph traversal model with the
following analysis cases.

» Simplified Graph: Attack 1, Safe 2
* Non-Simplified: Attack 3, Safe 4

The time measurements of the analysis cases for the different tools are depicted in Figure 5.5.

| |
Time Out
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Attack Safe Attack Safe

] Do OFMC I 0SPASS 0 ProVerif \

Figure 5.5.: Time measurements (on logarithmic scale) for analysis cases of zone isolation.

The measurements show that ProVerif is only able to analyze the Safe configuration, because in the other
case it does not terminate within our time frame of 4 hours. Since ProVerif is based similarly on resolution
as SPASS (which terminates within the time limit for all problems), we suspect that the pre-processing of
rules in ProVerif may be the cause.

OFMC yields good performance results and is fast for analyzing such a large-scale infrastructure. We
noticed a problem in analyzing the vulnerable cluster with the non-simplified graph, that is OFMC runs
out of memory. SPASS terminates for all analysis cases and is faster for case 1 as OFMC.
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Discussion

The analysis of a large-scale infrastructure with regard to the zone isolation goal gave us insights into
the efficiency of our modeling and the employed problem solvers. We learned that our initial modeling
of connected() facts using Horn clauses or transitions were only applicable for small infrastructures
and not for such real-world scenarios. Therefore, we developed the more efficient modeling of using
intruderHas() facts for graph traversal, which made the analysis in a reasonable time frame possible. The
complexity of this graph traversal is only linear to the number of edges, whereas the graph traversal using
connected() yields a quadratic complexity.

Furthermore, we learned that problem solvers were overwhelmed by the detailed modeling of the
infrastructure in form of our realization model. In case of security goals concerned with graph connectivity,
we developed a graph refinement algorithm that simplifies the realization graph, but preserves its
connectivity properties. The combination of efficient graph traversal modeling and graph simplification
yielded results in the order of seconds for the analysis of our scenario infrastructure.

In terms of employed problem solvers, SPASS and OFMC performed best for our scenario.

5.7 Summary

In this chapter we demonstrated our system architecture and approach for the automated verification
of virtualized infrastructures. We are able to specify a variety of security goals in a formal language
and validate heterogeneous infrastructure against them. We are the first to employ general-purpose
model-checker and theorem provers for this matter.

We studied three examples of static and dynamic problems, namely zone isolation, secure migration, and
single point of failure. For each problem, we showed how to specify goals in the formal languages and
proposed efficient modeling strategies. We successfully demonstrated the automated verification of these
examples against small infrastructures. Finally, we also validated a large-scale infrastructure against the
zone isolation secure goal and showed the practical feasibility of our approach.
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6 Dynamic Information Flow Graphs

We introduce a static information flow analysis for dynamic systems. Based on user-configurable trust
assumptions, our approach computes an information flow graph on top of a system model graph. The
edges in this information flow graph are annotated with dependencies on the trust assumptions’ conditions,
which operate on node attributes and connectivity. A dynamic system model is described as a graph
delta of incremental and decremental node and edge changes as well as node attribute changes. Our
differential analysis computes the impact of a system model graph delta on the information flow graph
based on the information flow edges’ dependencies. We apply our approach to the practical and important
problem of tenant isolation in dynamic virtualized infrastructures.

6.1 Introduction

Isolation is a fundamental security requirement in any multi-level security system. The non-interference
property [GM82] is a strict formalization of isolation: Inputs and outputs are classified as either low or high,
and a computation on low values must not influence high outputs and vice versa. Less strict and practical
variants of non-interference have been proposed, which allow for instance mediated communication
between different security levels using channel control [Rus92]. Alternatively, access control models
for multi-level security systems exist, such as, Biba [Bib77] for integrity, Bell-LaPadula [BLP76] for
confidentiality, and Chinese Wall [BN89] for confidentiality with conflicting parties.

These fundamental security models find their application in practical systems security. For instance
in virtualization, the sHype [SJV*05] hypervisor mediates inter-VM communication and enforces the
aforementioned access control models. Rueda et al. [RVJ09] analyzes VM access control policies using
information flow graphs to verify inter-VM flows. The TVDc [BCP*08] approach enforces access control
on the entire virtualized infrastructure level and not just on the hypervisor. Similar approaches have been
proposed for the Android operating system, such as, domain isolation [BDD*11], taint tracking [EGC*10],
and permission analysis using graph reachability [BDD*12].

In general we can classify the isolation approaches as either static or dynamic. The static approaches
operate on a model of the system and compute potential information flows, in order to make a policy
decision on illegal flows. The dynamic approaches monitor the running system for actual flows to detect
or block illegal ones. A similar classification is done in program analysis where static approaches operate
on the source code of the program, and dynamic approaches analyze the executing program. One benefit
of the static approach is that we compute all possible flows whereas in the dynamic approach we only see
the current actual flows. However, the static approach operates on a model of the system. In dynamic
systems we need to ensure that the model is kept in sync with the actual system, otherwise we have delays
in the detection of violations or miss transient violations altogether. Previous static approaches, such as
[RVJ09] and our approach of Chapter 3, only operate on static system models. In this chapter we pursue
a static analysis approach of dynamic systems based on system change events and a differential analysis.
We apply our approach to the case study of isolation in dynamic virtualized infrastructures. However
our approach is general enough to be applied also in other domains, such as attacker propagation in
digital-physical environments or access control configurations.

Our approach works in two phases: the initial phase and the differential phase. The initial phase takes a
current snapshot of the system modeled as a graph. A directed information flow graph is computed as
an overlay graph on top of the system model graph. Using the information flow graph we can compute
reachability between any two nodes, in order to verify isolation policies. The information flow edges are
constructed based on a set of user-defined flow rules that capture trust assumptions on system elements
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and their isolation properties. The constructed edges are dependent on the flow rules’ conditions on
node attributes and connectivity. This lays the foundation for the dynamic analysis because we record the
existence requirements for each edge and can verify if these requirements still hold in a changing system.
In the differential phase, we obtain a system model change as a graph delta, which describes incremental
and decremental node and edge changes as well as node attribute changes. We compute the impact of the
system model change on the information flow graph based on evaluating the flow rules for new nodes
and edges, remove information flow edges for deleted elements, as well as using the edge’s dependencies
on node attribute or connectivity changes.

Contributions
In summary we make the following contributions.

* We propose the novel concept of information flow graphs constructed from user-defined flow rules.
The flow rules capture trust assumptions on isolation in system components based on their attributes
and connectivity. This leads to a generic and user-configurable approach that we apply to the case
study of isolation in virtualized infrastructures. We analyze the correctness and complexity of our
approach, in particular we adapt a firewall fault model to analyze flow rules sets.

* We establish dynamic information flow graphs that are updated based on system model changes,
including incremental, decremental, node property, and resulting connectivity changes. This enables
a differential information flow analysis for dynamic systems. We apply our dynamic approach also to
the case study of isolation in virtualized infrastructures in combination with a system that provides
system model changes.

6.2 Isolation in Virtualized Infrastructure

Multi-tenant virtualized infrastructures offer self-service access to a shared physical infrastructure with
compute, network, and storage resources. While administrators of the provider govern the infrastructure
as a whole and the tenant administrators operate in partitioned logical resource pools, both groups change
the configuration and topology of the infrastructure. For example, they create new machines, modify or
delete existing ones, causing large numbers of virtual machines to appear and disappear, which leads to
the phenomenon of server sprawl [GRO5]. Therefore, self-service administration, dynamic provisioning
and elastic scaling lead to a great number of configuration and topology changes, which results in a
complex and highly dynamic system.

Misconfigurations and insider attacks are the adverse results of such complex and dynamic systems.
Indeed, even if committed unintentionally, misconfigurations are among the most prominent causes
for security failures in IT infrastructure [OGP03]. Notably, according to studies by ENISA [ENI09]
and CSA [CSA10], operational complexity, which leads to misconfiguration and security failures, as
well as isolation failures are among the top threats in virtualized infrastructures. Isolation failures put
both the provider as well as the consumers at great risk due to potential loss of reputation and the
breach of confidential data. Further, malicious insiders and their attacks are considered a top, very
high impact security risk. Consider an example of isolation breach from misconfiguration, which we
encountered in the security analysis of a financial institution’s in-house VMware-based production cloud:
An administrator performed a wrong VLAN ID configuration change leading to an unnoticed network
isolation breach between the high-security and the test security zone. The goal of our approach is to
compute an information flow analysis in such rapidly changing systems.

In Fig. 6.1 we illustrate our model of a virtualized infrastructure, which consists of (virtualized) computing,
networking and storage resources that are configured through a well-defined management interface. In
particular, we illustrate the networking part in more detail. Physical hosts and their hypervisors provide
networking to VMs by virtual switches that connect the VMs to the network. A virtual switch contains
virtual ports, to which the VMs are connected via a virtual network interface card (vNIC). Virtual ports
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Figure 6.1.: Model of a Virtualized Infrastructure

are aggregated into port groups, which apply a common configuration to a group of virtual ports. Virtual
LANs (VLANs) allow a logical separation of network traffic between VMs by assigning distinct VLAN IDs
to the port groups. Our network model is focused on the OSI Layer2.

From an isolation and trust assumptions point of view, two VLANs are logically isolated from each other if
they are configured with distinct VLAN ID values (and not configured to 0). However, if two port groups
have the same VLAN IDs, but their underlying virtual switches are without a physical network connection,
then they are also physically isolated. On the compute level and an arguable assumption is that hypervisors
isolate VMs, i.e., no side channels [RTSS09] exist. It is crucial to allow user configurable/extensible
rules that capture those different and arguable assumptions. The goal of our approach is to capture
user-dependent trust assumptions in rules that guide our information flow analysis. The output of the
analysis is tightly dependent to the conditions of the rules and these conditions may be invalidated due to
system model changes, which leads to a complex analysis.

6.3 Constructing an Information Flow Graph using Flow Rules

In this section we lay the foundation for the fully dynamic information flow analysis by constructing an
overlay information flow graph on a given system model graph using flow rules. We formalize both the
system and information flow models, as well as defining the flow rules and their matching. We introduce
an algorithm for the first-matching of flow rules and discuss a well-ordering for rules sets. Important for
the dynamic analysis is to capture the dependencies of information flow edges on the rules’ conditions.
Additionally we need to capture implicit dependencies due to the first-matching application of rules.

6.3.1 System and Information Flow Models

The input of the information flow analysis is a system model in the form of a directed, symmetric, vertex-
typed and -attributed graph. The analysis produces as an output a directed, edge-labeled graph, which we
call an information flow graph, as an overlay on the system model graph. Figure 6.1 illustrates our model
of a virtualized infrastructure including actors such as administrators. We represent the topology of the
virtualized infrastructure with the following graph model.

Definition 34 (System Model). Let T be a set of vertex types, 3. an alphanumeric alphabet where A C &." is a
set of vertex attribute names, and D C X* is a set of attribute values. The system model graph Gg = (Vs, Eg, P)
contains a set of uniquely labeled and typed vertices Vs CV := (%7 x T), a set of edges E5 C (Vg x V), and
a vertex properties set P C P := (A x D). A vertex v is a tuple of vertex label and type (l,t) € Vy, and we
write v.t to obtain the type of a vertex. The edges are directed and symmetric, i.e., for each edge e = (v;, v;)
there must exists an edge e’ = (vj, v;) in Es. A partial function attr : (V x A) - D is defined as an attribute
function which returns for a given vertex and attribute name the attribute value. We also use the notation
v.a for a € A to obtain the attribute value instead of attr(v, a).
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Definition 35 (Hierarchically-Typed and Relational Vertex Model). The vertex types T form a tree hierarchy
that establishes a partial ordering of the types based on transitive parent-child relations, i.e., child < parent or
a directed edge (child, parent), where the root node type is called Any. We define a type relation T C (T x T).
A given type pair (t;,t;) € (T x T) is considered adjacent if there exists a pair (t;, t;.) € T for which t; < t!
and t; < t;. Gg is considered valid if Y(v;, v;) € Eg : adjacent(v;.t, v;.t).

The data model of the system is a simplified form of the Enhanced Entity-Relationship Model that
establishes sub-typing and relationship modeling.

Definition 36 (Information Flow Model). The information flow model graph G;(Gg) = (Vs, E;) is derived
from Gg and contains the set of typed and attributed vertices Vg of the system model graph Gg, as well as a
set of directed and labeled edges E; C (Vg x V) with an edge label function f : E — {flow,noflow}. An edge
e = (v;, v;) with label flow means that information from v; can flow to v;, whereas noflow indicates no flow.
We write information flow edges in short form as iedge.

In terms of dynamic behavior of the models, we consider the system model graph to be static. In
Section 6.4 we will study a fully dynamic system model graph and its implications on our information
flow graph. However the information flow model is dynamic, i.e., during application of rules we are
inserting new edges.

6.3.2 Information Flow Rules

The information flow rules encode trust and isolation assumptions of system model elements by the user.
They are a mandatory input for constructing the information flow graph from the system model graph.
The application of rules in a first-matching semantic and the construction of the information flow model
is discussed in Section 6.3.4.

Definition 37 (Information Flow Rule). Let F be a set of flow types {flow,noflow}, T a set of system model
vertex types. A rule r is a tuple r = (ft, t;, t;,p,, P.), where ft € F, t;, t; €T, p, a predicate on attributes of
vertices Vg and p. a predicate on connectivity of vertices in G;. The rule describes information flow from a
vertex of type t; to another vertex of type t;.

A rule is considered simple if (t;, t;) is adjacent (cf. Definition 34) and p, is always true. A rule is considered
complex if (t;, t;) is non-adjacent and p. may only be using connected statements on simple flow edges. A
default simple rule only operates on type Any, is adjacent, and p, and p, are always true. An information
flow edge e that is later produced by a simple or complex rule will have the rule type rt(e) of either simple or
complex.

We use rules with connectivity conditions for expressing tunneled information flow between two system
components that are not directly connected in the system model. For example in our case study, we
use connectivity conditions to model VLANs and other form of tunnels (GRE, VPN) between the tunnel
endpoints.

Depending on the flow type of the default rule, the analysis may either tend to produce false positives
in case of a default flow because we are over-approximating the possible information flow. In case of a
default noflow, the analysis may produce false negatives.

6.3.2.1 Attribute and Connectivity Conditions

Our definition of an information flow rules includes two predicates p, for attribute conditions and p,
for connectivity conditions. We treat those predicates separately and do not allow mixing attribute with
connectivity conditions. The predicates are expressed in Boolean algebra.
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The attribute predicate p, takes two vertices v;, v; and the property set P of the system model graph. The
predicate can use equality expressions on, and only on, the attributes of v; and v;. We do not allow nested
attribute conditions.

The connectivity predicate p, takes two vertices v;, v; and the information flow graph G;. The connectivity
conditions is built upon a connected predicate that we define as the following: connected(a,b) fora, b € Vg
returns true if there exists a path from a to b in the information flow sub-graph G; 4,,, = (Vs, E; 4,,,) where
E; fiow = {e | e € E; A f(e) = flow}. Only complex rules are allowed to have connectivity conditions and
only on the information flow sub-graph that was produced by simple rules, i.e., on the following edge set:
E; fiowsimple = {€ | € € Ej gy ATt(e) = simple}. As the flow edges are directed, connected is not necessarily
symmetric. The vertex parameters of connected can either be v; and v;, or adjacent vertices of those.
We call a condition predicate closed if it has been partially applied with the two vertices v;, v;. The
resulting closure still takes either the current attribute property set P for attribute conditions or the
current G, for connectivity conditions.

6.3.2.2 Rule Matching and Evaluation

Given an information flow rule and a pair of vertices, we define when a rule matches and what the
evaluation of that rule returns.

Definition 38 (Rule Matching and Evaluation). Given a rule r = (ft, t;, t;, Py, p.) and a pair of vertices
v; and v;. The current system state is given as Gs = (Vs, Eg, P) and G;(Gs). A rule has a full match if the
types match: (v;.t < t;) A(v;.t <t;), and the conjunction of conditions is true: p,(v;, vj, P) A p.(v;, v}, Gp).
The rule returns an information flow edge e = (v;, v;) with flow label f (e) = ft. If the types do not match,
then the rule evaluates to nil. If the types match, but any of the predicates does not, then we have a partial
match, and we return an implicit dependency, which contains the rule, the closed attribute and connectivity
condition predicates, as well as the vertex pair.

Here we only introduced the matching of a single rule and the possible in return values. In Section 6.3.4
we discuss a first-matching algorithm that takes a set of well-ordered rules for evaluation.

6.3.2.3 Attribute and Connectivity Dependencies

If a rule fully matches and returns an information flow edge, this edge depends on the rule’s attribute and
connectivity condition. To prepare the grounds for the dynamic system model analysis, we associate these
dependencies with the edges.

An attribute dependency AttrDep is a set of tuples (v, a), where v € Vg, a is an attribute of vertex v,
and a predicate d,, which is the closed attribute predicate that is true if the attribute dependency is still
fulfilled. Each usage of a vertex attribute in the attribute condition will result in a vertex-attribute tuple
in the resulting attribute dependency. Similarly, a connectivity dependency ConnDep is a set of tuples
(v;, v;, p) where v; and v; are the connectivity endpoints and p an optional connectivity path. Predicate d,
indicates if the connectivity dependency is still fulfilled, which is again the closed connectivity predicate.

6.3.3 Ordering of Information Flow Rules

The ordering of rules is important since we apply them in a first-matching semantic in our analysis. In
this section we discuss how to establish a partial ordering for a given sequence of rules based on the rules’
types and conditions. We derive a directed acyclic graph, the Rule Order Graph, from the partial ordering,
which yields a rule evaluation order for the analysis.

For a sequence of rules R we define a function cmp : (R x R) — {EQ,LT, L} that establishes a partial
ordering for any pair of rules with the return values less-than (LT), equal (EQ), and undefined ().
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Table 6.1.: Subset of Information Flow Rules Relevant for PortGroup (PG) VLAN Isolation.

# Kind Flow  Directed Node Pair Condition(s) Edge Dependency
1 Simple stop VSwitch — PortGroup PG.vlanld # 0 Attribute VLAN ID
2 Simple stop PortGroup — VSwitch PG.vlanld # 0 Attribute VLAN ID
3 Simple follow  Any — Any — —
4  Complex follow PortGroup — PortGroup  PG;.vlanld # O A PG;.vlanld = PG;.vlanld  Attribute VLAN ID
A connected(vswitch(PG;), vswitch(PG;)) Connectivity of VSwitches
5 Complex stop PortGroup — PortGroup — —

We use a running example to illustrate the rule ordering. We defined a subset of rules in Table 6.1,
which are derived from our case study description from Section 6.2. We establish the ordering using
two implementations of the cmp function: one for type-based and another for condition ordering. If
type-based ordering returns equality for a given rule pair, we need to further order by conditions.

6.3.3.1 Type Ordering

Given our type hierarchy from Definition 35, two rules may operate on different levels of this hierarchy.
In general, given two rules that operate on types that are in a transitive parent-child relationship, then
the rule with the child types has to be evaluated first. Otherwise, the more general parent-type rule is
always applied. We define the cmp function for type-based ordering as the following:

EQ if rl.ti:rz.ti/\rl.tj:rz.tj
LT if (1.t <7ty ATty S rput)) V(1 S oty ATqty < 1aut)
ERR if (ry.t; <rp.t; ATyt >10.t))V (ry.t; > 1oty ATyt < Toutj)

1 otherwise

Cmptype(rI’ ry) =

The types of the type tree form a partial order and here we establish a product order for tuples of two
types. LT if one type is strictly less than the other in the tuple. We have an error case (ERR) if we have
conflicting relations, where one type in the tuple is strictly less but the other one is strictly greater than
the corresponding type of the other tuple. In any other case the ordering is undefined.

In case of EQ, we require further condition-based ordering. In case of ERR we need to abort the
information flow analysis as the rules ordering is inconsistent. If any of the pair types are not in a
(transitive) parent-child relation, then the ordering is undefined, i.e., we obtain a partial order of the
rules based on their types. If for all rules the node type pairs are distinct/non-relational, then the rules
are confluent, i.e., the order of which they are evaluated does not matter.

6.3.3.2 Condition Ordering

For the rules that are defined for equally typed nodes we require ordering based on their condition
predicates. Basically when given two equally typed rules, the rule with the most specific condition has to
be first, and the one with the most general condition last. The two rules must not be equal, but can be
either in a LT or L relation.

Given two rules r; and r, with their condition predicates p; = r;.p, Ary.p. and p, =ry.p, A75.p.. The
predicate atoms are connected statements and attribute equalities on typed constants and variables.
We need to define a partial order (EQ, LT, 1) returned by a function cmp,,4 analog to the type-based
ordering. We employ an approach based on the interpretation of predicates and truth assignments. We
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leverage existing work in this areas, e.g., for the ordering of methods with conditions [EKC98] or predicate
interpretation with parametrized truth assignments and value domains [AU95].

A function truths is defined that returns for two given predicates a list of variable assignments from the
value domains as well as connected statement truth assignments. Further, we define a eval function that
takes a truth assignment (variable value assignments and connected truth assignments) and a predicate,
and returns either true or false for the predicate evaluation under the given variable assignments and
connected statement assignments. The function substitutes variables with assigned values and connected
statements with truth assignments. The predicate with substitutions is then evaluated.

Connectivity Truth Assignments
We have a set C of connected(a,b) statements each for a unique pair of vertices (a,b). Each unique
statement is considered true or false leading to 2/¢! possible truth assignment combinations. Note
that the statement is not symmetric, i.e., when connected(a,b) is assumed true it does not mean that
connected(b,a) must be true too.

Attribute Equality Truth Assignments

We write attribute equalities as a predicate AttrEq(a1,a2) for al = a2. We have a set of AttrEq(a1, a2)
where the parameters can either be constants or variables of types integer, string, or Boolean. The domain
of integers D; includes the integer constants and for each variable a unique random integer value. Analog
are the domains D, for strings and D, for Boolean values. We consider the set of attribute variables typed
integer A;, string A, or Boolean A,. The possible combinations of value assignments for the attribute
variables are |D; |l - |D,|"4s! . D, | el

Determining a Partial Ordering of Predicates

The combinations of truth assignments for connected statements and value assignments for attribute
variables leads to the overall number of combinations: 2/¢! - |D;|Mil . |D|s! .| D, 4], It is exponential to
the number of connected statements as well as attribute equality parameters.

Given two rules r; and r, and their predicates p; = r;.p, A1;.p. and p, = ry.p, A 15.p.. We compute the
truth and variable assignments with truths on those predicates and then iterate over the assignments. For
each assignment eval evaluates both predicates. We obtain equality if for all assignments the interpreta-
tions of the predicates are simultaneously true. For an LT order we require that for all assignments the
first predicate implies the second. Otherwise, the order of the predicates is undefined.

We define the condition-based compare function as the following:

Cmpcond(rl, r2) = Cmpéond(rl'pa ATy -Pc>T2-Pq A r2'pc)

where cmp],__, is a helper function that operates on the rules’ predicates.

EQ if Vt €truths(py,p,):eval(t,p;) Aeval(t,p,)

emp, 4(P1,p2) = (LT if Vtetruths(py,p,): eval(t,p;) — eval(t, p,)
1 otherwise

The two predicates are equal if they are simultaneously true for all truth assignments. In negated form,
they are “mutually exclusive exactly if one implies the negation of the other” [EKC98] or in other words a
NAND operation. They are LT if the specific predicate p; always implies the more generic predicate p,,
i.e., when p; is true then p, must be true, which is a logical implication. Ernst [EKC98] uses the term
“overrides” to describe that one predicate is a specialization of another, i.e., the specific predicate overrides
the general predicate. He defines it as “Method m1 overrides method m2 iff m1’s predicate implies that of
m2, that is, if (not m1) or m2 is true.” [EKC98].
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(Simple, Default) (Complex, Default)

[Rule 2] [Rule 4]

Figure 6.2.: Order Graph of Rules of Table 6.1 based on Type and Condition Ordering.

6.3.3.3 Establish a Rule Order Graph

We establish a Rule Order Graph Gy as a directed graph with rule identifiers as vertex labels. A directed
edge (rq,1r,) with edge head r; and edge tail r, represents that r; < r,. It means that r; must be evaluated
before r,. The relation between partial orders and DAG (also later topological sorting) is well known and
we use it here.

Our example rule set produces the following rule order graph illustrated in Figure 6.2. The simple rules
Rule 1 and Rule 2 are dependent on the default simple rule Rule 3. Rule 1 and Rule 2 are however
unrelated in terms of the type pair they operate on, because VS £ PG and vice versa. Rule 4 is a complex
and non-adjacent rule, therefore independent of all the other simple rules, but dependent on the default
complex rule Rule 5.

6.3.4 Application of Rules and Construction of Information Flow Model

The construction of the information flow model is based on the system model and uses the matching
of individual rules (cf. Section 6.3.2.2) from a well-ordered set of rules (cf. Section 6.3.3). Hence, the
application of rules requires as inputs the system model graph as well as the rule order graph. The output
is an information flow model with the edge dependencies derived from the rule application. For our
case-study we use both the system model sub-graph as illustrated in Figure 6.3 and the subset of rules
shown in Table 6.1. The final output is shown as an overlay graph in Figure 6.4.

PortGroup1 PortGroup2
vlanld=123 vlanld=123
<—>l VSwitch2

Figure 6.3.: Input Model: Subset of system model graph

(VSwitch1)

The algorithm uses a first-matching semantics of the rules. A topological sort of the rule order graph
provides a valid evaluation order that adheres to the ordering of the rules. If the topological sort cannot
produce a sorting we will report an error. The topological sort may produce many valid evaluation
orders, because two rules with undefined ordering are confluent and can be evaluated in any order. The
application of the rules is defined in Algorithm 1. The key points of the algorithms are the following:

* TopoSort performs a topological sorting and produces a linear ordering R of the rules in the rule
order graph Gg. We split the rule sequence R into simple (adjacent) rule set Ry and a complex
(non-adjacent) rule set Reomplex- For the simple rules we iterate over the edge set of the system
model graph. For the complex rules we obtain the nodes for the matching (sub-)types using a
function TypedNodes and evaluate the node pairs.

* We have a function EvalRule that tries to match a rule (cf. Section 6.3.2.2) and returns either an
information flow edge (iedge), implicit dependency, or nil for a given rule, node pair, as well as
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Algorithm 1: Application of Information Flow Rules.

Data: Rule Order Graph Gg, System Model Graph G = (Vs, Eg, P)
Result: Information Flow Graph G; = (V}, E;) and Components Graph G,

// Initializing the information flow graph and compute rule order
GI «— (VS) Q)
R « TopoSort(Gg)

Dg«— @ // Initializing implicit dependencies of simple rules
// Processing simple rules of R
foreach (u, v) € E5 do
foreach r € Ry, do
res < EvalRule(r,u, v, Gg, G;)
if res is iedge then
(Dg, d) < ImplicitDeps(res, 1, Dg)
iedge.implicits « d
E; < E; U {res}
break
else if res is implicit dependency then
‘ Dg < Dg U (r,res)
if Dg # 0 then
‘ ERROR // Unclaimed implicit dependencies

// Updating the information flow graph and compute components graph
Gy < (Vs, Ep)
G, < ComputeSCC(G;)

Do <@ // Initializing implicit dependencies of complex rules
// Processing complex rules of R.
foreach r € Ry, dO
V.; < TypedNodes(r.t;, Vs)
V,; < TypedNodes(r-.t;, Vs)
foreach (u,v) €V,; xV,; do
res « EvalRule(r,u, v, Gg, G;, G¢)
if res is iedge then
(D, d) « ImplicitDeps(res, r, D[ (u, v)])
D¢[(u, v)] < D
iedge.implicits < d
E; « E; U {res}
break
else if res is implicit dependency then
| Del(u, v)] — Del(w, 1)]U (r 7es)
if D # 0 then
| ERROR // Unclaimed implicit dependencies

// Final information flow graph and compute components graph
G, < (Vs, Ep)
G < ComputeSCC(G;)

return (G;, G.)
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system and information flow models and optional component graph. A pre-condition of the rule
evaluation is that (u, v) € E;.

* For a returned information flow edge, we find, obtain, and remove the implicit dependencies
of previous rules using the ImplicitDeps function (cf. Section 6.3.4.1). We associate the implicit
dependencies with the iedge, i.e., setting iedge.implicits, and insert the edge into the information
flow model graph.

* If an implicit dependency is returned, we store the dependency together with the rule and for
complex rules also together with the evaluated node pair. In the algorithm Dg holds the implicit
dependencies of simple rules, and D, holds the ones of complex rules indexed by the evaluated
node pairs.

* In case of nil we simply evaluate the next rule. We report an error if we have unclaimed implicit
dependencies, which have not been taken by another rule. For example no default rule for adjacent
rules, or no catching rule for the non-adjacent rules.

Strongly Connected Components

As an optimization to determine reachability, we use strongly connected components (SCC) and a
component graph (or also called reachability tree) [CSRLO1, Section 22.5]. They allow us to efficiently
evaluate connected statements in a rule’s connectivity condition. A component graph is a DAG that
contains the SCCs as vertices and there exists a directed edge between two SCCs if there exists a directed
edge between any two elements that are contained in the respective SCCs. Elements within one SCC
are mutually reachable, i.e., reachability can be checked by set membership. To determine reachability
between two elements that are not part of the same SCC, we try to find a path in the component graph
between their respective SCCs. The reachability is by definition only unidirectional. With the function
ComputeSCC we compute the SCCs and the component graph on a sub-graph of G; that only contains
flow-labeled edges and is further parametrized by the rule type. During rule application we compute the
SCCs [Tar72] after all simple rules have been evaluated, because the subsequent complex rules may have
connectivity conditions based on the result of the simple rules. Finally we also compute SCCs after the
complex rules have been evaluated for the entire information flow graph, in order for policy checks to
verify connectivity.

PortGroupt)_________flow, complex | PortGroup2| ..,
vianid=123 ConnDep(VS1, VS2, SCC2), vianid=123

R AttrDep(PG1.vlanld == PG2.vlanld) e

\ 1
\ !

\ noflow, simple !
| AttrDep(PG1.vlanid !=0) b

1 . 1
' noflow, simple ,

K AttrDep(PG2.vlanid !=0)
\

1

/ \
PI \i
(VSwitch1)«——> <~—>(VSwitch2) SCC2
Y v
~o . —’,7 ‘-\\‘ —”/

flow, simple flow, simple

Figure 6.4.: Output Model: Graph model annotated with dashed information flow edges of different
kinds (simple, complex, attribute- and connectivity-dependent).
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6.3.4.1 Implicit Dependencies

To further prepare the ground for the dynamic information flow analysis, we need to record when a rule
matched because a child rule (in the rule order graph) did not match due to mismatching attribute or
connectivity conditions. A resulting information flow edge from a rule evaluation obtains the negative
conditions from the rule’s child rules. It means the result only exists because one of the child rules did
not match. Once the system or information flow model are changing a previous rule may match and the
current result needs to be invalidated.

The function ImplicitDeps takes an iedge, a rule, and a list of implicit dependencies. It returns a new
dependency list with the matching ones removed and a disjunction of the matching dependencies’
predicates. The matching dependencies for a rule r are: D’ = {(r’,d,,d.) € D | r' < r} with r’ < r for a
transitive order in the rule order graph (cf. Section 6.3.3.3). The remaining implicit dependencies are
simply D \ D’. In the case of complex rules, we need to further index the implicit dependencies by the
vertex tuple. The implicit dependencies D’ are then associated with the iedge. An iedge is valid if it’s
own dependencies are true, but not any implicits. Given D’ = (iy,..., i), then iedge.implicits(P,G;) =
\/(ij.da(P) A1;.d.(Gy). Both the closed attribute and connectivity predicates have to be true for a child
rule to match. If any of the child rules match then the parent rule must be invalidated, therefore the
disjunction of implicit dependency predicates. The validity of an information flow edge under the current
property set and information flow graph is given as a predicate valid(iedge,P, G;) = iedge.d,(P) A
iedge.d.(G;) A —(iedge.implicits(P,G;)) where d, and d, are again the closed condition predicates. We
derive the attribute and connectivity dependencies not only for the rule’s own conditions, but also for its
implicits.

6.3.5 Algorithm Analysis

We analyze our approach with regard to the termination and complexity analysis of the algorithm. We are
adapting and extending a firewall fault model and analyze how our analysis prevents such faults. Finally
we discuss the correctness of the ordering and application of rules.

6.3.5.1 Algorithm Termination and Complexity

The termination of algorithm 1 is given by the following properties:

* Finite Sets: We apply a finite set of flow rules. We evaluate the simple rules by iterating over the
finite edge set Eg and similarly for the complex rules on subsets of vertex products Vs x V. In each
iteration of algorithm 1 the set of non-evaluated edges or vertex pairs shrinks, and we do not modify
these sets during the execution of the algorithm.

* Limited Inter-Rule Dependencies: We do not have any circular or self dependencies among rules,
which could otherwise result in a rule application without termination. Rules depend on node types
and their attributes, which are not influenced by any other rules. Complex rules may depend on
connectivity, which is influenced by other rules. However, we limit connectivity conditions to only
iedges produced by simple rules (cf. Definition 37). This provides a one-way dependency from
complex to simple rules, but no circular or self dependencies exists among the complex rules.

» Termination of Helper Functions: The helper function EvalRule performs a rule matching and only
uses a terminating BFS on the finite component graph. ImplicitDeps is iterating over the finite set of
implicit dependencies. TypedNodes returns a subset of nodes from the finite nodes set V. TopoSort
and ComputeSCC are existing algorithms and are variants of DFS, which is terminating for finite
graphs with node coloring.
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We analyze the run-time complexity of our analysis by breaking it up into the following steps:

e Rules Ordering and Topological Sort: Type-based rule ordering requires |R|> comparisons, each
comparison’s complexity linear to the depth of the type hierarchy. Condition-based ordering requires
IR|? - 2I¢I . |D, |4l . | D, 4! | D, b comparisons, which is exponential to the number of connected
statements and attribute equalities. Topological sort is O(|Vy| + |Egl), since it is based on DFS. The
ordering and topological sort is done once for a given rule set.

* Rule Evaluation: EvalRule is constant with regard to Gy and R, but for a given rule r it depends
on the number of condition statements in p, (the sets of integer/string/boolean attribute atoms:
|A;| + |A| + |A,]) and p, (the set of connected statements |C|). Connected statements can be
evaluated in constant time using set membership checks when the nodes in the same SCC, or linear
to the size of the component graph by using path finding (e.g., BES). Attribute condition atoms are
evaluated in constant time.

 Implicit Dependency: For simple rules the implicit dependencies are derived linearly to the size of
the rules. For complex rules, we first perform a constant lookup with the node pair (u, v) followed
by finding the implicit dependencies in linear time in the rule set.

* Simple Rules Application: The evaluation of the simple rules requires |Eg| - |[Rgimpie| applications of
EvalRule and ImplicitDeps.

* Complex Rules Application: The evaluation of the complex rules requires |R ompiex| * [V | applications
of EvalRule and ImplicitDeps. We evaluate the complex rules for the matching pairs of typed nodes,
where V{ is a subset of Vs, which practically makes a difference but not asymptotically.

* Computation of Strongly Connected Components: We compute the strongly connected components
(SCCs) twice: first after the application of simple rules and a second time after the complex rules
application. Tarjan’s algorithm [Tar72] to compute SCCs has a complexity of O(|Vs| + |E;|) as well
as the component graph creation is linear [CSRLO1, Section 22.5].

In summary, we can differentiate between load-time and run-time complexity. Load-time is concerned
about rule ordering and run-time about the evaluation of rules. The dominating parts for load-time are
the quadratic rule complexity for rule ordering in general and exponential condition ordering in particular.
In practice this is not a problem, because we only do it once for a given rule set, the condition ordering
only happens for equally node-typed rules, and the number of connectivity and equality statements in
the predicates is small. During run-time the dominating factor is the evaluation of complex rules with
quadratic vertex set size.

In terms of space complexity, the upper bound is given by a full mesh information flow graph given by
|V5|? iedges. Each iedge may obtain and store implicit dependencies from |R| — 1 rules. The component
graph based on the SCCs would as the upper bound contain |Vs| SCCs, where each system model vertex
is its own SCC. As a future optimizations, we can introduce information flow vertices in addition to the
iedges. Such a vertex would allow to move from a full mesh information flow graph to a star topology.
For instance in the case of Rule 5 of Table 6.1, which currently would create a full mesh between the
non-matching portgroups, we can create one information flow vertex for the noflow portgroups.

Complexity Comparison with Traversal Analysis

We now compare the complexity of the information flow graph based analysis, denoted as FLowGRAPH
approach, to the graph traversing analysis of Chapter 3, which we denote as the Trav approach. The Trav
information flow analysis performs a graph traversal based on a set of traversal rules, which are similar to
our flow rules, starting from a set of information source vertices. Each source obtains a unique color that
propagates through the graph based on the rules’ decisions. In the worst case, we have |Vy| information
sources and perform a DFS-like traversal with O(|Vs| + |Eg|) from each source, leading to a dominating
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run-time complexity of |Vg|2. In terms of space complexity, each vertex has to store at least |Vs| unique
colors, although rules may create an arbitrary number of “sub-colors”, also called tags. We compare the
two approaches for the following steps:

* Rules Ordering: This step is required by both approaches in similar complexity, although in Trav
a good ordering is assumed and no automated ordering performed. The rules conditions of Trav
do not contain connected statements, which simplifies the condition ordering to just attribute and
tags-based conditions.

* Rule Evaluation: Considering a single rule evaluation, both approaches operate on the vertices
attributes. FLowGRrapH also allows connectivity conditions that is evaluated linear to the size of the
component graph in the case of a complex rule. The Trav approach operates on the current color
and sub-colors, which is independent of the graph size.

* Rule-Dependent Metadata: Rules can lead to metadata that needs to be stored in addition to the
information flow state. In FLowGRrAPH we store explicit and implicit dependencies. Similarly, the
Trav rules can create sub-colors or tags. In both cases the space complexity of the metadata is highly
dependent on the specific rules set.

* Rules Application: In FLowGraPH we differentiate between simple and complex rules. We do not have
this differentiation in the Trav approach, but only have simple rules equivalents. For complex rules,
the dominating run-time complexity is given by |Vs|?, although in practice we evaluate a vertex
subset, e.g., only portgroups. In the Trav approach we start for instance from VMs as information
sources, and typically |PG| < |VM|.

* Connectivity Evaluation: In FLowGraPH we use SCCs for efficient connectivity evaluation, which
takes in the worst case linear to the component graph size. In Trav we evaluate connectivity based
on colors, which is constant for a color set membership. However the connectivity depends also on
the information sources, i.e., we can evaluate connectivity only from specific information source
vertices.

In summary, the dominating run-time complexity of |Vs|? is given in this approach by the complex rules
evaluation, although in practice we typically evaluate a subset of Vy. In the Trav approach the same
complexity is dominating when starting a graph traversal from each vertex as an information source. The
evaluation and application of rules differs slightly between the two approaches, where this one depends
on connectivity conditions and the other one on color tags. In terms of space complexity, both approaches
have to store in the worst case |V|? information flow states, either in the form of a full mesh information
flow graph or as |V,| colors for each vertex. We outline as part of future optimizations how this space
complexity can be reduced by moving from a full mesh to a star topology with information flow vertices.
Although for the full system mode analysis the both approaches are very similar in terms of run-time and
space complexity, in Section 6.4 we compare the two approaches with regard to analyzing a dynamic
system model.

6.3.5.2 Fault Model for First-Matching Rules Application

The goal of the information flow analysis is to extrapolate the isolation decisions between system model
components by a user to the entire system. Instead of deciding for each individual edge and node pair in
the system model graph if there is an information flow or not, the user captures generalized decisions
using the flow rules.

The extrapolation is based on the specific rule set and the application of those rules. The first depends
on the decisions by the user and there is no clear right or wrong. We can reduce the correctness of the
extrapolation to the correctness of the rules. The second depends on the dependencies between simple
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and complex rules and the ordering of the rules due to our first-matching semantic. The rule application
first evaluates the simple rules and only then the complex rules to satisfy their one-way dependency.

To analyze the rule ordering, we adapt and extend the firewall fault model [CLHX10, CLHX12], because
in firewall rules we also deal with first-matching semantics and similar faults.

* Wrong Order: The ordering of rules is critical in a first-matching application and our approach has
to ensure a well-ordered set of rules. We have to consider the following cases how rules can be in a
wrong order:

— Wrong Type Ordering: A rule with more generic types must appear after a rule with more
specific types, i.e., sub-typed rules before super-typed rules. We rely on the facts that the type
tree establishes a partial order of the types and product order to establish a partial order for
the tuple of types.

- Wrong Conditions Ordering: For two equally typed rules, the rule with the more generic
condition must appear after the rule with the more specific condition. We obtain a partial
predicate order using truth assignments and interpretation with variable assignments.

— Inter-Rule Dependencies: Rules may only depend on each other due to connectivity conditions.
However this could lead to circular dependencies. We prevent cycles by only allowing one-way
dependency from complex to simple rules. We always evaluate simple rules first so that the
dependency of the complex rules is satisfied.

— Conflicting Rules: When rules operate on the same types and conditions but producing different
results. We prevent this by requiring a non-equal ordering after type and condition ordering
for two given rules.

* Missing Rule: Depending on the default rule, a missing rule may lead to false positives (default is
flow) or false negatives (noflow). We can reduce this fault to the correctness of the rules and their
coverage (number of explicit vs. default rule, cf. Chapter 3).

* Wrong Predicates: Wrong conditions may result in false positives or negatives when a rule triggers
under the wrong circumstances or is not triggered at all. This fault is again reduced to the correctness
of the rules.

* Wrong Decision: A rule may return a wrong flow decision (Flow/NoFlow). This can be a crucial
mistake that can also lead to false positives and negatives. In general we advice to perform NoFlow
decisions in the simple rules with a default flow decision, in order to mitigate false negatives. In
such a case a wrong decision can be spotted more easily.

* Wrong Extra Rule: Old rules may remain in the rule set. They could result in ordering problems,
which we would detect. However they could also result in false positives or negatives. We do not
see this as a major problem as we are dealing with more static and smaller rule sets compared to
network firewall configurations.

In summary, many faults can be reduced to the correctness of the rules themselves. In practice, for the
different application domains we envision a rule set that is based on best practices. In addition, the
ordering of rules is crucial and our approach ensures a well-ordered rules set and a rule application that
satisfies inter-rule dependencies.

6.3.5.3 Correctness of Rule Ordering and Application

We have to show the correctness of two parts of the analysis for the static system model case: First, the
correct ordering of rules; Second, the correct application of the ordered rules.
The ordering of rules relies on the following parts of the analysis, which are build upon existing work:
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* Type Ordering: The vertex types form a type hierarchy in form of an in-tree, i.e., a rooted tree
where all vertices have a unique path to the root. We can derive a partial ordering based on the
child-parent edges. A product order establishes a partial ordering for a tuple of partially ordered
elements.

* Condition Ordering: Using truth assignments and variable assignments from a value domain, we
establish a partial ordering of the rule’s predicate. In particular two predicates are equal when they
are simultaneously true for all assignments, and one predicate is less than another if the first implies
the second. Predicate ordering has been used also in other domains [EKC98].

* Rule Order Graph: We construct a DAG based on the partial ordering between rules using the type
and condition partial ordering. A DAG can represent a partial order, where a directed edge (u, v)
represents u < v. In particular the following properties are fulfilled: reflexive since each vertex can
reach itself ; transitive since we can construct a transitive closure; asymmetric because with u < v
and v < u if u # v then we would have a cycle, so not a DAG anymore.

* Topological Sorting: Given a DAG, the topological sorting produces a linear ordering (out of
potentially many valid ones) of the vertices based on their directed edges. This is a well-known
algorithm [CSRLO1, Section 22.4] used in areas such as task scheduling. In our application, we
apply topological sorting on our Rule Order Graph, which is a DAG, to obtain a rule evaluation
order.

For the second part we show that an error in the reachability of any two vertices in the information flow
model can only be caused by an error in the individual information flow rules, but not by an error in the
application of the rules by our algorithm.

* Completeness of rules application: For a given rule set, the application of these rules is complete. We
evaluate all edges with the simple rules in first-matching semantics. We evaluate all vertex pairs
that match or are sub-types of a complex rules.

* Reduction to the correctness of individual rules: Given any pair of vertices (a,b) where
connected(a,b) is true. There must exists a path p = [e;,...,e;] of ordered k iedges with
flow type flow, by definition of the connected predicate. An edge e; = (u, v) in the path has
either been created by a simple rule if there exists an edge (u, v) € Eg or by a complex rule in
the non-adjacent case. Either rule has made a flow decision. If the expected outcome was that
connected(a, b) is false, then a simple or complex rule returned the wrong flow decision: instead
of flow it should have return noflow.

Similarly, if connected(a, b) is false, given all possible paths P between a and b, then all paths
must contain a noflow iedge: V(p € P)3(e € p) : f(e) = noflow. If the expectation was that
connected(a, b) is true, then there must exists one path for which all iedges are flow. At least one
rule made a wrong flow decision by returning noflow.

6.3.6 Summary

We lay the foundation for the dynamic information flow analysis by introducing a rule-based construction
of an information flow graph for a static system model. We defined both the system and information flow
models as graphs, introduced the information flow rules and their ordering, and shown an algorithm for
the application of such rules. Overall the key concepts of our approach are the following:

» System and Information Flow Models as Graphs: The system is modeled as an directed, symmetric,
vertex typed and attributed graph. The vertex types form a tree-like type hierarchy and relationships
between vertices are modeled. The information flow model is an overlay on the system model (i.e.,
using the same vertex set) but edge-labeled with flow and noflow as well as directed.
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* Flow Rules and Matching: The rules capture isolation and trust assumptions of the user into system
model components. Based on a vertex pair types as well as attribute and connectivity conditions,
the rule returns either a flow or noflow decision. A rule matches a given pair of vertices of the
system model when the types are equal or subtypes of the rule, and when the conditions are true.
Important for the dynamic analysis is that we record for each iedge the attribute and connectivity
dependencies, as well as implicit dependencies due to the first-matching rule application.

* Rule Ordering and Application: The rules are applied in a first-matching way. Therefore the rules
ordering is crucial. We establish a partial ordering based on rules’ types and — if equally typed- also
on conditions. On the resulting Rule Order Graph we perform a topological sort which yields an
evaluation order. We always evaluate first the simple rules then the complex ones due to possible
connectivity dependency.

6.4 Fully Dynamic Information Flow Analysis

We lay the foundation for the dynamic information flow analysis in the previous section, in particular
by recording for the created information flow edges the condition dependencies as well as implicit
dependencies from preceding rules that did not match. If connectivity or attributes change, the affected
information flow edges with their dependencies have to be re-validated and if necessary partially re-
computed.

In this section we discuss the handling of a fully dynamic system model and the implications on the
information flow model. Instead of performing an information flow analysis always from scratch when
the system model graph changes, we perform an analysis that updates the information flow graph. First
we define a change to the system model as a graph delta.

Definition 39 (System Model Change). Given a system model graph G, = (V;,E;). We define a system
model change as a graph delta A = (V*,V",E*,E",M), where V* CV, V- CV,, E* CE, ET CE,, M C
(VS’ x A x D). The delta contains creator as well as eraser nodes and edges, and a set of node attribute

modifiers (vertex, attribute, value).

We rely on an existing system (cf. Chapter 7) that provides us such system model changes for our case
study.

Given a delta A and two versions of the system model graph: before the change G = (V{, Eg) and after the
change G5 = (Vs, Es). G is constructed from the given A and Gy in the following way: Vg = (Vo \V7)UV™,
Eg = (Eg \ ET)UE", and applying the node modifiers on V. A differential information flow analysis
computes an information flow graph G; based on an information flow graph G; of the previous version of
the system model graph Gg and A. Thereby it operates on the difference between the system models given
as A to compute the updated information flow model graph G;.

The challenge we solve is to maintain an information flow graph, which is build from simple as well as
attribute and/or connectivity-dependent information flow edges, even when connectivity or attributes
are changed. Our differential analysis works in two phases: First, given a graph delta, we process the
changes to the system model graph and the impact on the information flow graph. In particular applying
flow rules for new vertices and edges, removing affected iedges while removing vertices and edges, and
determining attribute dependency violations due to attribute changes. Second, based on the changes to
information flow model in the first phase, we compute and process connectivity changes, in particular
determining connectivity dependency violations.

6.4.1 Translating System Model Changes to Information Flow Changes

In the first phase we process the system model graph delta, and for each element of the graph delta
A= (V*,V7,E* E~,M) compute information flow graph changes.
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* Node Attribute Changes: Find all affected attribute-dependent edges and remove them if they are
invalid, i.e., their attribute condition does not hold anymore or one of the implicit dependencies is
true. Re-evaluate the vertex pairs of the removed iedges and insert potentially new iedges due to
re-evaluation.

* Eraser Edges: For each system model edge we remove the corresponding information flow edge.
Further, if one of the edge’s vertices is part of a connectivity-dependent iedge with another vertex as
a connectivity endpoint, then the iedge is invalid if the removed edge provides the relation between
the vertex and endpoint.

* Eraser Nodes: Remove the nodes as well as all their incoming and outgoing edges from the
information flow graph. Find all connectivity-dependent edges that require the erased nodes as
connectivity endpoints, and remove those edges too.

* Creator Nodes: For each node evaluate the complex rules (given the new node, and all the existing
matching typed nodes, as well as vice versa), which may create new information flow edges, and
insert the created edges into the information flow graph.

* Creator Edges: Evaluate simple rules for each new edge and insert the resulting information flow
edges in the graph. Analog to edge removal, we need to find the (negative) connectivity-dependent
iedges, where the new edge establishes the relation between the vertex and its connectivity endpoint.

Regarding the ordering of the graph delta processing, deletion and modification of vertices can only be
performed on the existing vertices of the system model graph as defined in Definition 39. We first perform
the node attribute changes, then the deletion of edges and vertices. The final step is the creation of nodes
and edges.

Examples of system model changes for our case study are the following and illustrated in Figure 6.5. In
case of an attribute change where PortGroup1’s VLAN ID changes to zero (denoted as Ay;,y), the edges
between the vswitch as well as the other port group are removed, but a new flow edge is introduced
between the vswitch. If we have a node removal, i.e., VSwitch is removed from Figure 6.4 (denoted as
Ayswiten), the edges to PortGroup1 and Network are removed. Additionally, the edge between the port
groups is removed, because it is dependent on the connectivity of the vswitches.

In summary, removal of graph elements directly impacts the associated iedges, but also the connectivity-
dependent iedges that rely on a removed element as part of their connectivity endpoints. Attribute
changes affect the attribute-dependent iedges and require a rule re-evaluation when an iedge’s attribute
dependencies are violated. For new graph elements we simply evaluate them with our rule set.

6.4.2 Processing Connectivity Changes

In the previous phase of our dynamic information flow analysis we processed the system model changes
and modified the information flow graph accordingly. The addition and removal of information flow
edges may cause changes in the overall connectivity which we have to process and handle as well. In
particular we need to handle connectivity-dependent iedges. Only the iedges that have been created by
complex rules can be affected, as only them have connectivity dependencies.

We need an interface that notifies us about connectivity changes, in particular if there exists increased
or reduced connectivity, and if any existing connectivity paths in dependencies are affected. Since we
are using strongly connected components (SCCs) for efficient connectivity checks, we also use SCC
re-computations to tell us after inserting a set of edges, which SCCs have been added/removed, and
which edges have been added/removed in the component graph.

With Tarjan’s algorithm [Tar72], we can do set operations between an old and a new component graph’s
vertex and edge sets. Ideally, we would use a dynamic reachability approach [RZ04] that can also provides
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Figure 6.5.: Examples of Graph Deltas on the System and Information Flow Models.

us notifications on reachability changes. The SCC component graph G;. = (V;, E() is derived from G,
and a new G = (V, E¢) from G;. We compute the removed SCCs V. \ V. and removed inter-SCC edges
E_ \ Ec. As well as new SCCs V. \ V/ and new inter-SCC edges E. \ E.. We process the connectivity
changes as reflected in the component graph changes in the following ways.

* Removed SCCs or inter-SCC edges: In the case of reduced connectivity, we find all iedges that
have a connectivity dependency with a connectivity path. These iedges depend on a found path and
the reduced connectivity may have invalidated this path. In particular we have to check the iedges
with a path that contains a removed SCC or inter-SCC edge if their connectivity dependencies are

still valid.

* New SCCs or inter-SCC edges: In the case of increased connectivity, we find all iedges that have a
connectivity dependency without a connectivity path. In contrast to the previous case, these iedges
exists because no path was found for their connected statements. The increase in connectivity may
have established such a missing path. We have to check the connectivity dependency of all iedges

without a connectivity path.

In our case study, if the Network node is removed from the example of Figure 6.4, SCC2 splits into two
new SCCs, i.e., SCC2 is removed and two new SCCs are added. In the example, the connectivity-dependent
edge between the port groups is affected and removed, because SCC2 appears in its connectivity path.
Since another connectivity path could exists for the connectivity endpoints, we re-evaluate the complex
rules for the removed edges’ node pairs. However, in the example no other connectivity path exists.

6.4.3 Algorithm Analysis

In this section we discuss the termination and complexity of the dynamic analysis algorithm. Further we
show the equivalence between the fully and differential information flow analyses.
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6.4.3.1 Algorithm Termination and Complexity

The termination of the dynamic information flow analysis is given by the same set of properties as for the
static analysis (cf. Section 6.3.5.1):

* Finite Sets: The differential analysis operates on the finite sets of the graph delta with created/erased

vertices and edges, as well as attribute modifiers. The iteration over these sets processes each
element only once and does not modify the sets. In particular our definition of graph deltas only
allow deletion and modifications of existing nodes and not of newly created ones in the same delta.

Limited Inter-Rule Dependencies: Although attribute and connectivity changes may result in the
invalidation and re-evaluation of iedges, the termination of the algorithm is given by the following
properties. Attributes are only changed through system model changes and not through the
application of rules. Therefore one rule is not attribute-dependent on another rule, thus no inter-
rule attribute dependencies exist. Complex rules can be connectivity-dependent, but we limit this
dependency to connectivity produced only by simple rules. Simple rules cannot be connectivity-
dependent. This one-way dependency (cf. Section 6.3.5.1) prevents any circular dependencies
among complex rules.

We analyze the complexity of our differential algorithm with regard to the processing of system model
changes and the handling of connectivity changes. The complexity of processing the system model changes
is the following:

Attribute Changes: Processing of attribute changes is linear to the number of modifiers |M|. For each
modifier (v, a, d) we perform a constant lookup of the affected attribute dependencies for (v, a).

Eraser Edges: The removal of iedges is linear to the number of removed system model edges |E~|.

Eraser Nodes: For each removed node in |V ™| we remove the incoming and outgoing iedges, which
is linear to the number of iedges with a constant lookup of connectivity-dependent iedges indexed
by endpoints.

Creator Nodes: Given the node set V of the previous system model, we need to evaluate the complex
rules for the pairs between the existing nodes and the new nodes: V* x V¢ + V{ x V*, as well as
between the new nodes themselves V* x V*. For each we perform the rule application (EvalRule
and ImplicitDeps) and an edge insertion.

Creator Edges: We evaluate the simple rules for all new edges: |E™| - |Ry;ypl, for each edge we
evaluate the rule and find the implicit dependencies. We further find the connectivity-dependent
iedges where the edge establishes the relation between a node and endpoint.

The complexity of the connectivity change processing is the following:

Reduced Connectivity: We are iterating over the connectivity-dependent iedges that have a connectiv-
ity path (subset or equal of E;). An iedge is affected if an element of its connectivity path is removed.
For an affected edge we try to find an alternative path (linear to the size of the component graph,
BFS for shortest path).

Increased Connectivity: We are iterating over the connectivity-dependent iedges that have no
connectivity path (subset or equal of E;). For all iedges we need to check if a path has been
established between the connectivity endpoints (linear to the size of the component graph, BFS for
shortest path).
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Complexity Comparison with Traversal Analysis

The analysis approach of Chapter 3 is not designed to handle a dynamic system model. In particular rules
dependent on the current color or color tag lead to an information flow state that highly depends on the
current system model. Changes to the system model requires to re-run the entire analysis. Therefore
the comparison boils down to the differential complexity as previously discussed and the full analysis
complexity of Chapter 3 as discussed in Section 6.3.5.1.

6.4.3.2 Full and Differential Analyses Equivalence

The objective is that there is no difference in the information flow graphs produced by the differential
analysis compared to the full one. Given the current system model graph Gg, a system model change A,
and the information flow graph G; of the previous system model graph Gg. The full information flow
analysis (cf. Section 6.3) of Gs produces G; g,y The differential information flow analysis using G; and A
produces an information flow graph G; 4. Both G g, and G 4 are equal, i.e., the edge sets are equal
and all edges have the same flow type. We show the equivalence between the full analysis on the changed
system model and the differential analysis based on the graph delta in the following cases:

* Node Attribute Changes: The full analysis would never have seen the original vertex attributes,
only the changed attribute value. The regular rules application of attribute-conditioned rules may
either match in a first matching semantic, or no match.

For the differential analysis we have to consider two cases: would the same rule that was applied
still hold, i.e., is the attribute condition fulfilled, and would a previous rule match instead. To
achieve the same results as the full analysis, the differential analysis needs to handle the two cases:
the rule does not match anymore (attribute condition not fulfilled), that means the iedge has to
be removed. Second, a previous rule now matches (first matching semantic), therefore the iedge
produced by the current rule has to be removed. We achieve this through attribute dependencies
and implicit dependencies.

* Eraser Nodes and Edges: The full analysis would never create iedges to or from any erased
node (complex rules) nor based on any removed edges (simple rules). The differential analysis
achieves the same result by removing the iedges that connect to any removed node and the iedges
corresponding to the removed edges.

In addition, the removal of edges can also break the relation between nodes and their connectivity
endpoints. The differential analysis removes the complex iedges where the relation is broken due to
edge removal.

* Creator Nodes and Edges: The changed system model is given as Vg = (VJ \ V7)U V™ and
Eg = (E;\ ET)UE". We already showed the equivalence for the eraser nodes and edges, therefore
we now consider Vs = V" UV™ and Eg = EJ U E™ with the erasers already applied in V' and E.

Given the new edge set E; = E; U E™, for the full analysis we can split the rule application (cf.
algorithm 1) into iterating over E and iterating over E*. The differential analysis already iterated
over E{ for the previous model and now only iterates over E*.

Similarly for the new vertex set Vs = V' U V™. The full analysis will evaluate the complex rules
on typed node pairs of V5. We can split the evaluation into the set of typed node pairs of V' x V’,
as well as evaluating the sets V* x V{/, V" x V¥, and V* x V*. The differential analysis already
evaluated the node pairs of V" x V' for the previous model, and now only considers the pairs

between the new vertices and the existing ones.

Additionally, the creation of new edges can establish the relation between vertices and their
connectivity endpoints in case of (negative) connectivity-dependent iedges. We handle this case in
the creator edge processing and re-evaluate the affected iedges.
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6.4.4 Summary

Building upon the concepts of the static information flow analysis of Section 6.3 we defined a fully
dynamic analysis. The key concepts are:

» System Model Changes as Graph Deltas: Changes to the system model, which is a graph model, are
defined as graph deltas consisting of creator nodes and edges, node modifiers, and eraser nodes and
edges.

* Processing of System Model Changes: Given a system model and a system model change as a graph
delta, the differential analysis computes the information flow model changes based on the graph
delta. We show that the full and differential analyses result in the same information flow model.

* Processing Information Flow Changes: Changes to the system model result in changes in the informa-
tion flow model. The differential analysis processes how the connectivity changes and determines
the connectivity-dependent iedges that are affected.

Overall the differential analysis builds upon the full analysis and partially applies the rule evaluation. The
attribute and connectivity dependencies of iedges are essential in producing an equal information flow
result for the differential analysis compared to the full one.

6.5 Implementation

We implemented the differential information flow algorithms in Scala, a functional as well as object-
oriented programming language. In particular we want to highlight the ability of using Scala to express
the information flow rules. Scala is an object-oriented language and thereby provides sub-typing, which is
required to represent our hierarchically-typed vertex model (cf. Definition 35).

Further, the language provides pattern matching that allows to express a set of cases given as variables
and types, which are matched against an input object and the case that matches the input object’s types
returns a value. In Listing 6.1 we encoded the rules 1, 2, and 3 from Table 6.1 using a pattern match.
Each rule is represented by one case with a tuple of variables and optionally their types. The input object
for the pattern match is a tuple of source and destination vertex representing an edge in the graph model.
In our example, the first two cases require the vertices to be of type VSwitch and VMwarePortgroup,
whereas the last case does not impose any type conditions on the tuple values.

val simpleRules: Rules.SimpleRulesMatcher[RealNode] = {
case (vs: VSwitch, pg: VMwarePortgroup) if pg.vlanid != 0 =>
InfoFlowEdge (vs, pg, AttrNoFlow(pg, "vlanld"), () => pg.vlanid != 0)
case (pg: VMwarePortgroup, vs: VSwitch) if pg.vlanid != 0 =>
InfoFlowEdge (pg, vs, AttrNoFlow(pg, "vlanld"), () => pg.vlanld != 0)

// Default flow rule
case (x, y) => InfoFlowEdge(x, y, Flow)

}

Listing 6.1: Information flow rules encoded as a pattern match in Scala.

Scala also allows to further restrict each case with conditions, for instance on the matching variables’
attributes. In our example rules we restrict that the matched VMwarePortgroup named pg has a vlanld of
not 0. The last rules does have neither type restrictions nor conditions, i.e., it can match any tuple.

The evaluation of the pattern match cases follows a first matching order, thus the last rule only matches
any tuples that have not been matched by a previous case. The Scala compiler provides checks on the
validity of the pattern match. It will check for exhaustive matching, i.e., if all cases of possible input types
are caught by at least one pattern match case. Further the compiler checks for type-based override, i.e.,
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one case is not reachable because a super-typed case overrides it. To some degree also condition-based
override checks are performed, e.g., it checks if a case with a condition follows a case with the same type
but without any conditions.

The result of a matching case is an InfoFlowEdge that contains the source and destination vertices, the
flow decision, and predicates as anonymous functions determining the validity of the edge for the attribute
and connectivity dependencies. We have multiple classes for representing the flow decision, including
for instance flow/noflow decisions that are attribute dependent (AttrFlow and AttrNoFlow) and which
contains the vertex and attribute name of the dependency.

The rules are written in Scala and dynamically loaded using Scala’s run-time reflection. Thereby the
information flow analysis does not have to be recompiled when the rules change. Still the rules are
statically type checked and compiled by the Scala compiler. We use the ScalaGraph library to represent
the system model as a graph using a customized edge class (InfoFlowEdge). On this graph model we
compute the components graph using a slightly optimized SCC compute algorithm from ScalaGraph.
The first implementation using Scala’s pattern match approach has a set of limitations compared to the
designed algorithms. First, the condition ordering respectively the condition-based override check by the
Scala compiler is very simple and does not incorporate our attribute and connectivity based ordering
(cf. Section 6.3.3.2). Second, we cannot control the evaluation of the patterns nor are we notified when
a case has not been matched, thus we are not able to build up the implicit dependencies. In the first
implementation we have to handle the implicit dependencies explicitly by introducing extra rules, for
instance, as shown in Listing 6.2 which have to be placed before the default flow rule. Although the first
implementation is not as generic and powerful as the designed algorithms, it was able to handle the rules
and analysis of our case study of Section 6.2.

case (vs: VSwitch, pg: VMwarePortgroup) =>

InfoFlowEdge (vs, pg, AttrFlow(pg, "vlanld"), () => pg.vlanld == 0)
case (pg: VMwarePortgroup, vs: VSwitch) =>

InfoFlowEdge (pg, vs, AttrFlow(pg, "vlanld"), () => pg.vlanld == 0)

Listing 6.2: Explicit rules to handle the implicit dependencies before the default rule.

In terms of testing, we perform system model changes to a small and known system model graph where
we specify the expected connectivity after the change as test case assertions. This allows us to test the
expected changes in the information flow graph performed by the information flow rules upon system
model changes. Further, we test the entire analysis on randomized system models as input data, for
which we developed a system model generator using ScalaCheck. This allows us to test for unexpected
termination issues or exceptions on unknown system models, but does not test the expected connectivity
in those system models. We cover the following cases for our portgroup related rules.

* Check initial information flow connectivity for VMs on portgroups with the same VLAN identifiers,
which is our known base case.

* Changing a portgroup’s VLAN ID to 0. This must trigger the implicit dependency rule and the
attribute dependency invalidation due to an attribute change.

* Changing a portgroup’s VLAN ID to an existing one. This must trigger the regular portgroup rule
due to an attribute change.

* Disconnect the vswitch of a portgroup. This must invalidate the default flow edge due to edge
deletion as well as the connectivity-dependent complex edge.

* Connect a VM through a new VNIC. This establishes a new default flow through these node and
edge additions.

* Disconnect a VM if the corresponding portgroup is deleted. This must trigger the invalidation of
(simple and complex) edges due to the node deletion and connectivity path invalidation.
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* Create a new portgroup with an existing VLAN ID. Must trigger the creation of new simple and
complex edges due to simple and complex portgroup rules.

* Connect an existing vswitch. Triggers the creation of new simple and complex edges due to implicit
connectivity dependency invalidation.

6.6 Conclusion

In this chapter we propose a approach for the static information flow analysis for dynamic systems. We
introduce the concept of dynamic information flow graphs with user-defined flow rules. The flow rules
capture the user’s trust assumptions in system components and their isolation. The dynamic information
flow graphs are dependent on the flow rules’ conditions and changes to the system model may require re-
computation of parts of the information flow graph. However compared to other approaches our analysis
operates in a differential way; i.e., the analysis is updated based on the changes rather than performing
an entire analysis. We apply our approach to the case study of isolation in virtualized infrastructures,
where we model the infrastructure’s configuration and topology as a system model graph and capture
assumptions in the network isolation as flow rules. An existing system provides us with system model
changes that lead to updates in our dynamic information flow graph. Security systems can build upon
our information flow graph to verify isolation between system components using graph reachability in
dynamic systems.

As further optimization of our approach, we propose the following directions. We aim for a graph
reduction by replacing potential full-mesh graph structures, e.g., as created by default complex rules, with
star topologies. For this we need to introduce the concept information flow nodes that can be created by
flow rules. In our case study, the default complex rule for portgroups would create a noflow information
flow node to connect the portgroups to. The information flow nodes are also dependent on flow rules
conditions and need to be adapted based on system model changes. Furthermore, we can optimize our
approach by using a dynamic reachability or SCC algorithm rather than re-computing the SCCs using
Tarjan’s algorithm. Finally, we aim to apply our approach to new case studies, such as for attacker
propagation in digital-physical environments.
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7 Near Real-Time Detection of Security Failures

In this chapter we establish an automated security analysis of dynamic virtualized infrastructures that
detects misconfigurations and security failures in near real-time. The key is a systematic, differential
approach that detects changes in the infrastructure and uses those changes to update its analysis, rather
than performing one from scratch. Our system monitors virtualized infrastructures for changes, updates
a graph model representation of the infrastructure, and also maintains a dynamic information flow
graph to determine isolation properties. Whereas existing solutions in this area performs analyses
on static snapshots of such infrastructures, our change-based approach yields significant performance
improvements as demonstrated with our prototype for VMware environments.

7.1 Introduction

Infrastructure clouds are rapidly and dynamically changing systems due to self-service provisioning and
on-demand scalability. Tenant as well as provider administrators frequently adapt the configuration
of the sub-system they control, constituting in dynamic changes for the entire configuration. While
configurations of multi-tenant infrastructure clouds are complex in themselves, overseeing the security
consequences of many configuration changes by multiple administrators can easily be beyond the grasp of
human operators.

Indeed, the configuration complexity we observe in dynamically changing infrastructure clouds calls
for tool-support. Existing research in this space is mostly focused on dynamic infrastructure analysis of
non-security properties [SGG12], node integrity monitoring [SSVJ13] or establishing security analyses of
static systems given by a configuration snapshot (cf. Chapters 3 and 5). While the latter results give us
confidence about reasoning on security consequences of infrastructure cloud topology and configurations,
they suffer from blind spots due to transient security failures as well as from efficiency problems. In
fact, the isolation case-study of Chapter 3, which uses the static approach, shows that the analysis of a
mid-sized virtualized infrastructure required about seven minutes for extracting the configuration and
building up a model and one minute on the actual analysis of the model. Performing such an analysis in
a dynamic environment will lead to a backlog of changes that need to be analyzed, an increase in the
response times in case of security incidents, as well as scalability and efficiency problems.
Consequently, it is our primary goal to reduce the times for configuration extraction, model building
and analysis by establishing a systematic differential approach that does not require a full extraction and
analysis on each configuration change, but still maintains strong security foundations all the way. We
realize this goal with a practical security system that uses a model-based security analysis. It maintains
a graph representation synchronized with the actual configuration of the virtualized infrastructure and
accepts change events produced by cloud management hosts to update its own model. The model and its
updates form the foundation for a differential security analysis that maintains an information flow graph
for analyzing isolation properties and which tries to find violations of specified security policies.

Our Contributions. With the overall research goal to establish a differential security analysis of dynamic
infrastructure clouds, we make the following contributions: 1) We establish an architecture that caters for
near to real-time detection of configuration changes in heterogeneous virtualized infrastructures. 2) In
order to maintain a synchronized graph model of these infrastructures, we propose a set of algorithms for
the computation of graph deltas (added/removed nodes and edges, changed node attributes) applicable
to a graph model based on change events. 3) We offer a practical implementation of our system, called
Cloud Radar (CR), for VMware environments. Our comprehensive evaluation shows that the differential
approach reduces the overall analysis time significantly, putting near-to-real-time analysis in our reach.
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For a broad spectrum of cloud operations and even for large infrastructures, we measure model update
times in the order of milliseconds, which renders our approach several orders of magnitude more efficient
than previous static analysis approaches. 4) We establish a security analysis showing that Cloud Radar
can be set up as security monitoring of insider adversaries.

7.2 System and Security Model

An infrastructure cloud consists of (virtualized) computing, networking and storage resources, which are
configured through a management host and its well-defined interface.

Feedback operates on
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Figure 7.1.: System model of the differential security monitoring covering compute, network, and storage.

As shown in Figure 7.1, the system model of this work is poised towards a differential analysis based on
change events issued by the management hosts when the infrastructure is re-configured. The analysis
system uses these change events to continuously update a graph representation of the infrastructure, the
Realization model, which is used for subsequent analysis. As long as the management host issues the
events correctly, the model covers malicious adversaries, insiders and externals alike.

7.2.1 System Model

We represent the virtualized infrastructure in a graph model, called Realization model (cf. Chapter 3):
The model is an undirected, vertex typed and attributed graph. The vertices of the graph represent the
components of the virtualized infrastructure, which may be entire sub-systems, such as physical servers or
virtual machines, or low-level components, such as virtualized network interfaces. Vertices are typed, e.g.,
type vm denotes a virtual machine, and annotated with name/value attributes. The attributes encode
detailed properties of the components and capture their configuration. The edges of the graph represent
the connections and relationships among components of the virtualized infrastructure, therefore encoding
its topology. The vertex types of our model are organized in a hierarchy graph, i.e., a directed acyclic
graph (DAG) where the edges represent a parent-to-child relation. The hierarchy graph reflects the
inherent hierarchy found in the infrastructure. For example, a virtual machine belongs to a physical host,
and therefore a physical host has a directed edge to a virtual machine.

Considering the example from Figure 7.1, we see that the Realization model captures all areas of the
virtualized infrastructure: computing, networking and storage. While the actual model encodes fine-
grained components of all these areas, e.g., storage being represented as virtual disks, file backend objects
and storage pools, we focus our explanation on the networking components to prepare the ground for
examples in subsequent sections. Physical hosts and their hypervisors provide networking to VMs by
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virtual switches that connect the VMs to the network. A virtual switch contains virtual ports, to which
the VMs are connected via a virtual network card (vNIC). Virtual ports are aggregated into port groups,
which apply a common configuration to a group of virtual ports. Virtual LANs (VLANs) allow a logical
separation of network traffic between VMs by assigning distinct VLAN IDs to the associated port groups.
The Realization model is populated through an automated extraction of the configuration of the virtualized
infrastructure from the central management host and the translation of the configuration into graph
nodes and vertices. For each element in the configuration, such as a virtual machine, it constructs a
corresponding model vertex and populates the required attributes. To ensure a complete translation
of all relevant elements in the configuration, an element is either translated or explicitly ignored. A
translation warning is thrown for elements that are not processed. Thereby we follow the same principles
for discovery and translation as already discussed in Section 3.4.1, where the security impact of the
complete discovery and translation has also been covered.

7.2.2 Threat Model

We establish a threat model based on the dependability taxonomy [ALRLO4]. Agents, users, and ad-
ministrators can be malicious or non-malicious. Thereby, we cover all classes of human-made faults,
independent from intent or capability, that is, faults can be introduced deliberately as result of a harmful
decision or without awareness; faults can be introduced by accident or by incompetence. These fault
classes include misconfigurations as well as malicious insider administrators and, thereby, constitute a
strong adversary model. Agents that operate on behalf of a human, e.g., due to automation, are also
covered by this threat model, since we do not differentiate between the issuers of changes.

We only place one constraint on how the adversary can exert threats upon the virtualized infrastructure:
The adversary is bound to the well-defined cloud manager API and cannot subvert the communication
channel between the management hosts and the analysis system. In Section 7.5 we discuss and assess
multiple deployment approaches to realize such a constraint in a practical environment. For example,
based on isolation of the monitoring and management networks from the administrators, as well as using
mandatory access control. Note that we consider the security of the software for the management host
and the hypervisors as out of scope.

7.3 Design and Implementation

In this section, we describe the design and implementation of our Cloud Radar system. The goal of our
system is to detect — in near real-time — configuration changes that impact the security of virtualized
infrastructures. On a high-level, the system works in the following way.

The start of the system’s workflow is an initial snapshot of the configuration and topology of the entire
virtualized infrastructure represented as a graph model. An initial information flow analysis determines
how information may flow within the infrastructure, in order to determine isolation properties. Isolation
is critical in multi-tenant virtualized infrastructure and the concern of many security policies. The
crucial part of our approach is that we operate on change events, which are the result of a change in the
infrastructure, and which needs to be represented in the model by transforming it according to the event.
The transformation of the model may result in new or changed information flow in the system, and the
information flow analysis is differentially updated based on the change event. Finally, after each change
the resulting model will be analyzed with regard to a given security policy or a set of policies.

We depict the system architecture and components that implement such an analysis workflow in Figure 7.2.
The system is composed of the following components. A Probe knows how to monitor the virtualized
infrastructure and how to obtain change events. It is tied to a specific virtualization technology, e.g.
VMware. For heterogeneous environments multiple probes are instantiated. For each probe a translation
component (Trans) exists that knows how to convert from change events into model transformations, i.e.,
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Figure 7.2.: High-Level System Workflow and Components.

a graph delta (A). Depending on the information richness of the events, further information may need to
be retrieved from either the probe or queried from the existing model.

The Model component contains the graph model of the virtualized infrastructure as introduced in
Section 7.2.1. By obtaining graph deltas (A) from the Trans component, the model is updated in
accordance to the change event. A graph delta contains the nodes and edges that should be added
or removed, as well as attribute changes for nodes. As a pre-processor for the analysis, the Info Flow
component determines the information flow implications in the infrastructure and updates the graph
model with information flow edges. In a differential analysis, the information flow is updated based
on the graph delta. The Analysis component analyses the infrastructure given as the graph model with
regard to a security policy, which expresses desired or undesired properties of the infrastructure topology
or configuration.

7.3.1 Obtaining Infrastructure Change Events

We follow a similar architecture as presented in Chapter 3 where a set of probes extracts the configuration
of different virtualized systems. Instead of periodically extracting the entire configuration, we extend and
improve the existing approach with probes that obtain events of changes in the infrastructure.

The format and level of information of change events can largely vary between different virtualization
technologies. For example, VMware and Xen provide rich events on changes in their inventories, Libvirt
provides change events on a VM level, and OpenStack as a management platform only provides coarse-
grained events. In our design, we cater for the variety of formats and information richness of events
among different virtualization technologies. In this work, we focus on the VMware event probe.

7.3.1.1 VMware Probe

VMware maintains an internal relational inventory of the virtualized infrastructure that is composed out
of Managed Entities, such as virtual machines or physical hosts. Managed entities can have properties that
describe further configuration aspects of that entity. Each entity can be addressed using a Managed Object
Reference (MOR).

We are using the method WaitForUpdates of the VMware API [VMw13a] to obtain notifications on updates
and property changes for managed entities. This method is part of the Property Collector component,
which also handles retrieval of properties of entities in the API. The method returns an UpdateSet object
that contains an incremental version number, which is used in repeated calls to only obtain the latest
changes. Further, the update contains a set of ObjectUpdate objects with an Object attribute stating the
MOR of the updated object, as well as a Kind attribute to indicate the kind of update. The update kind
can be i) Enter for a new object, ii) Leave for a removed object, and iii) Modify for property changes of
that object.

Essentially, the updates state which objects have been added or removed from the inventory, and which
have been modified. For new or modified objects, a set of PropertyChanges describe the property changes
of the objects in the following form.
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* Operation: The type of property change. It can be i) Add a value to a collection property, ii) Remove
a value from a collection, or iii) Assign a value to the property.

* Name: The name of the property that is changed.
* Value: Only for Add and Assign, the value that is added or assigned to the property.

Consider the operation UpdatePortGroup that allows an administrator to change the virtual networking
configuration for virtual machines, including changes to the network isolation property. In the case that
an administrator changes the VLAN ID associated with a port group PG-1 to a new value of 123, we obtain
the following event from VMware.

[ modify] HostSystem (host—159)
assign: config.network.portgroup ["key—vim.host.PortGroup—PG—1"].spec.vlanld <— 123

The event indicates that the host object host-159 has been modified. In particular, as part of the network
configuration of that host, the property spec.vlanld of the port group PG-1 has been assigned the value
123.

7.3.1.2 Other Discovery Probes

We outline the implementation of probes for other virtualization technologies and how one could obtain
change events for them.

Xen: The XenAPI [Cit13] provides similar capabilities as VMware for obtaining change events on inventory
objects. An event is composed of an monotonically increasing identifier, a timestamp, the class of the
changed object (such as a virtual machine), an operation (add/delete/modify), as well as a reference and
UUID referring to the changed object.

Libvirt: The Libvirt API [Red10] provides an event loop mechanisms for delivering change events on a
VM level, such as life-cycle changes, reconfiguration etc. Events such as VM reconfiguration lack the
exact configuration, therefore the probe has to obtain further information directly from the hypervisors.
Further, this probe will only deliver change events on a VM level and not for other parts of a virtualized
infrastructure. A combined approach with a higher-level management probe, such as the one discussed in
the next paragraph, has to be pursued.

OpenStack: OpenStack is composed of multiple components for managing — among other aspects —
compute, network, and storage resources. A central messaging service based on AMQP [Opel3] is used
to exchange commands and messages between the components. By tapping into this central messaging
system, we can discover what changes are requested. For example, the creation of a new VM was
requested and a message is send to a compute node with the parameters of the VM. However, such
events are often coarse-grained and do not reflect the changes that happen on the hypervisor-level. A
combination of a high-level cloud probe with a hypervisor probe, e.g., the Libvirt probe, is desired.

7.3.2 From Change Events to Model Updates

From a high-level perspective, the Trans component translates from a change event to a model update in
the form of a graph delta, as illustrated in Figure 7.2. The translation has to differentiate between three
kind of change events. First, a new object appeared that may result in new nodes and edges in the graph
model. Second, an object was removed and the corresponding nodes and edges in the model have to be
removed, too. Finally, an object has been modified, i.e., attributes of that object have changed. This may
result in attribute changes of nodes in the model too, but it can also leads to the creation or deletion
of nodes and/or edges in the model. This categorization aligns well with the events produced by the
VMware probe since they contain an attribute indicating the kind of change.
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A translation is typically bound to a specific probe and its produced event format, i.e., a VMware translation
knows how to translate VMware change events. Therefore, we focus in the following on describing the
event translation design with the concrete example of translating VMware change events. The translation
needs to handle the three different change events, but also has to deal with the ordering of events due to
their dependencies, and with incomplete new objects. Therefore, the output of the translation is either a
graph delta, dependency requirements, or a notification that the translation encountered an incomplete,
ignored, or unsupported object. If an change event consists of multiple object updates, we merge the
produced graph deltas to form a single graph delta for that change event.

7.3.2.1 Translation of an Object Update

We explain and propose a set of algorithms for the successful translation of an Object Update into a graph
delta. The handling of a failed translation due to cases such as incomplete objects or dependency ordering
will be discussed in Section 7.3.2.3 and Section 7.3.2.4 respectively.

We define a graph delta as A = (V*,V~,E*,E~, M), where we differentiate between creator nodes and
edges (V*,E™), eraser nodes and edges (V—,E™), and a set M of node attribute modifier in the form of
(node,attribute, value). Creators lead to new elements in the graph, erasers remove existing elements
from the graph, and node attribute modifiers change attributes of existing nodes to new values.

Enter Object: Creating New Nodes and Edges

We obtain an Enter Object Update for a new object that has been created in the inventory as well as for
all the existing objects in the inventory during the initial probe connection. The goal of the translation
component is to produce new nodes and edges for the model based on the update.

The fundamental idea is to employ a recursive algorithm that starts at a newly created object and traverses
through all its connected neighbor objects. For each object, the technology-specific parts of the translation
creates a corresponding model node and populates its attributes with values of the object. It further
establishes relations to other created nodes due to the recursion. The output of this algorithm is a set
of newly created model nodes and edges, where the edges not only connect to new nodes, but also to
existing nodes in the model.

As part of the VMware translation, we distinguish between two types of objects: Managed Entity (ME)
and Data. The MEs are elements in the virtualized infrastructure inventory, such as virtual machines (VM)
or hosts, and have a reference (Managed Object Reference or MOR). On the other hand, each managed
entity may have configuration attributes represented as Data objects, such as virtual devices of a VM. We
represent both object types as nodes in the model.

Algorithm 2 shows the recursive translation for VMware objects. The distinction between the two object
types is realized through two functions: CreateEntity for Managed Entities (Alg. 2), and CreateData for
Data objects (Alg. 3). The algorithm is not shown in its entirety, but parts have been selected to illustrate
its concepts. The recursive function CreateEntity takes the Managed Entity that needs to be translated
into a model node, as well as the already created nodes and edges of this recursive translation run. If
the object has already been translated, i.e., it is in the Cache, we simply return the cached model node.
Otherwise, depending on the object’s type, e.g., a virtual machine, the translation creates a new model
node with the corresponding type, and extracts and translates the necessary attributes from the inventory
object into the model node. An attribute can be another ME, which requires a recursive call and merging
of its result, or it is a data object.

For a data object, the function CreateData will return the new node representing the data object.
Important for the recursive translation is that we consider data objects as terminators for the recursion,
because they do not link to other MEs which would lead to another recursive call. They are leaf nodes in
the hierarchy graph, i.e., no outgoing edges.
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Algorithm 2: Recursive Construction of Creator Node and Edge Sets. Depends on Algorithm 3 for
Data Objects.

Data: New Object o
Result: Creator Nodes V' and Edges E*.

CreateEntity(o,V*,ET) begin
Input: Object o, Creator Nodes V* and Edges E*
Output: Extended Creator Nodes and Edges, Created Node

if o in Cache then
| return V', ET,Cache(o)

switch o.type do

case HostSystem do

host « Host(name = o.name,...)

V* « VT Uhost

foreach vm in o.vms do

VT, ET, vm’ < CreateEntity (vm, V', ET)
ET «— E* U(host,vm’)

return V' E*t host

case VirtualMachine do

vm « VM (name = o.name,...)

Vit VvVtuuvm

foreach dev in o.devs do

V*t,E*,d « CreateData (dev, V', ET)
Et —Etu(vm,d)

Et « ET U(Cache(o.host), vm)

return V' Et, vm

case Network do

/* Ignored, because translated in host’s network configuration. */
return V', E* None
case... do

otherwise do
/* Unsupported object type */
return V' Et None

/* Calling the recursive function */
return CreateEntity (o, d,#)

The translation of object updates has to handle two corner cases: Incomplete objects, where the attributes
of an object have not been populated fully yet, and the ordering of object updates within the same update
set. We will describe the handling of these cases in Section 7.3.2.3 and Section 7.3.2.4, respectively.

Leave Object: Deleting Nodes and Edges

For each object that has been removed from the inventory, we obtain an Leave Object Update. The update
contains the MOR of the removed object, and we lookup the corresponding model node identifier and
obtain the node by querying the model component. Since in our model a managed entity might have
resulted in the creation of multiple nodes, we have to perform a recursive deletion of the dependent
nodes of the removed node.

The recursive deletion works as the following. First, given an object that was removed from the inventory,
we lookup the corresponding node in the model, and add the node to the eraser node set. For all the
deleted node’s neighbors, we place the connecting edges in the eraser edge set. Further, we continue
the recursive deletion at the neighbor node if i) the neighbor’s type is a child type in the hierarchy
(cf. Section 7.2.1); and ii) the neighbor node is not a managed entity.
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Algorithm 3: Construction of Creator Node and Edge Sets for Data Objects.

CreateData(d,V™,E") begin
switch d.type do
case VirtualEthernetCard do
vnic, vport « VNic(...), VPort(...)
pg « Cache(d.backing.portgroup)
vVt «— Vvt u{vnic,vport}
ET « EYU{(vnic,vport),(pg, vport)}
return V', E*, vnic
case... do

otherwise do
/* Unsupported data type. */
return None

Modify Object: Creating an Entire Graph Delta

Finally, we consider the case that an object has been modified. A Modify Object Update consists of a
Property Change and the modified object reference. This property change indicates the type of change,
the attribute that has changed, and potentially a new value.

Our algorithm consumes such a property change and produces a graph delta that consists of creator/eraser
nodes and edges, as well as a set of attribute modifier in the form of (object,attribute, value). The
algorithm has a similar structure as the algorithms for creating or removing objects, and in fact builds
upon them. For each object type, we further differentiate between the changed attribute, as well as the
operation performed on that attribute. For attribute assignments, we construct attribute modifiers that
change the corresponding node’s attribute. For added managed entities or data objects, we rely on the
algorithm that handles Enter objects. Similarly, we construct erasers for deleted objects based on the Leave
object algorithm.

An example to illustrate a modified object is the creation of a new virtual device, such as a virtual Ethernet
adapter, for a VM. In this case, we have to translate the new virtual device into a new model node, and
connect it to the existing VM node with an edge. Such an event produces the following creator nodes and
edges: V* = {vnic, vport} and E* = {(vm, vnic), (vnic, vport),(pg, vport)}, where vm corresponds
to the existing VM, vnic and vport are created, and the virtual port is connected to the port group pg.

7.3.2.2 Applying the Model Update

Given a graph delta as produced by our set of algorithms based on a change event, updating the graph
model is expressed as updating the node and edge sets of a given graph G = (V,E): V' =(V\V)uVv™
and E' = (E\ E")UE". The updated model graph is G’ = (V’,E’). For each node attribute modifier
(node,attribute, value) in M we change the attribute of the node in V' with the new value.

The graph delta has to adhere to the following invariants, otherwise the consistency of the model is not
ensured. The erasers can only operate on the existing elements in G, i.e., V- CV and E~ C E. Elements
cannot be created and deleted in the same graph delta. Further, we cannot have two node modifiers
(n,a,v) and (n,a, v’) where v # v’ in the same set M, since we have a conflicting modification of the
node n’s attribute a. During our evaluation we have not encountered violations of these invariants.

7.3.2.3 Postponing Incomplete Objects

Resolving further information of an object during the translation may fail when not all relevant attributes
have been set yet. For example in VMware, when a VM is created its configuration is only later fully
populated. In that case, we are dealing with an incomplete object. We maintain a set of incomplete
objects and monitor updates for these objects. If an incomplete object receives an update, we try to
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handle it as a new object rather than a modified one. If the translation succeeds, i.e., the object was
complete and could be translated, we remove the object from the incomplete set. Otherwise, it remains
in the incomplete object set. In practice and during our evaluation, incomplete objects always received
modify events when further attributes were populated, usually within a sub-second time span. We employ
periodic translation attempts for incomplete objects, in case they receive no further modify events. If
an object remains incomplete until a time-out t;,comprece 1S T€ached, an alarm is raised that indicates the
identifier of the object and when it was first observed.

7.3.2.4 Ordering of Updates based on Dependencies

We are dealing with an asynchronous system and we have to take care about the ordering of the change
events. However, two aspects of the VMware probe supports the ordering of events. First, the probe
connects over TCP which provides packet ordering for us. Second, VMware employs version numbers for
the event discovery, which provides an ordering of events between different versions. However, within
one UpdateSet, we may encounter a wrong ordering of changes where one change assumes the existence
of an entity that is created by another change in the same UpdateSet. We can order the changes by using
a dependency graph, i.e., a directed acyclic graph (DAG) where vertices are changes and directed edges
describe dependencies such that the source node fulfills the dependency of the target node. This ensures
that changes that produce required entities of other changes are processed first.

We construct such a dependency graph in the following way. A successful translation of an event returns
a graph delta of new or modified nodes. In the case of an unsuccessful translation due to a missing
dependency, i.e., a node was not found in the current model, the translation returns a requirement in the
form of a node type and a predicate on its attributes. Further, the translation of an event may return
potential nodes, which become available once other requirements are fulfilled. Based on the translation
attempts, we try to match new or modified nodes with requirements, and introduce a directed dependency
edge from the fulfilling event to the requirement. Potential nodes may also satisfy requirements, thereby
building up a dependency graph. A topological sort of the dependency graph will yield an evaluation
order.

7.3.3 Differential Information Flow Analysis

The information flow analysis determines how information may flow in the virtualized infrastructure by
computing an information flow graph. The analysis operates in a dynamic way and adapts to changes in
the realization model. We implement the approach of Chapter 6. The information flow graph forms the
foundation for analyzing isolation properties in the infrastructure. On a high level, the analysis works in
two phases: first, it takes the realization model graph that represents the infrastructure and computes an
overlay directed information flow graph. Second, it computes for the information flow graph the strongly
connected components (SCC), i.e., the sets of graph nodes that are mutually reachable, and constructs a
reachability graph of the SCCs.

7.3.4 Specification of Security Policies and Detection of Violations

For the detection of security failures, we define the following security policies, in the form of attack states,
with their graphical representation shown in Figure 7.3. This only constitutes a subset of security policies
that have been discussed in Chapter 4 and we will formalize more policies as graph matches in Chapter 8.
Cloud Radar tries to match the policies on the dynamic realization model and information flow graph.
Once a policy’s attack state matches, we have found a security failure. A set of security administrators is
notified about a security violation, in order to mitigate the problem.
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(a) Network Isolation (b) VM Placement

Figure 7.3.: Graphical Representation of Network and Compute Security Policies.

Network Isolation: Virtual machines are grouped into “security zones”, e.g., production and test zone,
and these zones must be isolated on the network level, e.g., through different virtual networks. This
policy is violated if we find a potential connection (flow+) between two VMs of different security zones
(za and zb).

The policy in Figure 7.3a operates on individual VMs, however we can make use of the aggregations such
as SCCs and zones, in order to reduce the number of evaluations. Formalized in VALID as the following
goal:

contains (SCC1, VM1).contains(Z1, VM1).
contains (SCC2, VM2).contains(Z2, VM2).
connected (SCC1, SCC2) & not(equal(Z1, Z2))

VM Placement: A group of virtual machines should run on one or multiple designated physical hosts,
e.g., for performance, availability, or also data privacy reasons. This policy is violated if a VM runs
on a different host than the ones designated. Preventing VM co-location, e.g., due to side-channel
attacks [RTSS09], is a variant of this policy.

Storage Isolation: VMs of different security zones must not be able to exchange information over a shared
storage device, e.g., by using the same file as backing of the VMs’ virtual disks.

We have two implementations to find a policy violation by matching the policy’s attack state against
the current realization model and information flow graph. The first one is a native implementation in
Java/Scala that iterates through the nodes in the model graph. It benefits from a fast execution time
and uses the SCC reachability graph to efficiently determine if two model nodes are connected. Either
the two nodes are in the same SCC or there exists a path between their corresponding SCCs in the
reachability graph. Otherwise, they are not connected. However, implementing new policies requires a
native implementation, which makes it less extensible by end-users, such as a cloud administrator.

The second implementation is based on a general-purpose graph matching tool called Groove [GdAR*11],
which tries to match a given sub-graph in a larger graph. In fact the policies in Fig. 7.3 are valid sub-graphs
that GrRoovEe can match against our realization model graph. The main benefit of this approach is its
extensibility, since end-users can implement new policies in a graphical and intuitive way. However, as a
general purpose tool it bears a higher execution overhead and for determining connectivity it uses an
equivalent but less efficient path-finding algorithm, compared to the SCC approach.

7.4 Performance Evaluation

In this section we empirically evaluate and discuss the performance of Cloud Radar in the case-study of a
semi-production environment as well as in simulated environments of different sizes. The performance
evaluation focuses on the processes of building and maintaining the models in sync with changes in the
infrastructure.
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7.4.1 Methodology and Environments

Our evaluation is performed with different environments: a real, semi-production environment (R;5)
with 2 hosts and 150 VMs, and a simulated environment that uses an infrastructure simulator incorporated
in the VMware management hosts. We vary the size of the simulated environment (S ;) between 150
and 30,000 VMs with a host-VM ratio of 1 : 50. This allows us to evaluate the scalability of our approach.
For each measurement we perform 10 runs of the workflow. Cloud Radar itself runs in a Linux VM with
12 vCPUs, 12 GB RAM, and Java 1.7.
We differentiate between the two approaches of obtaining and maintaining the model of a virtualized
infrastructure: Static Snapshot is the existing approach that always extracts the full configuration (cf. Chap-
ter 3). In order to deal with a dynamic and constantly changing infrastructure, the extraction has to
be executed periodically. On the other hand, Cloud Radar obtains an initial event containing the full
configuration of the infrastructure, followed by events for infrastructure changes. In order to compare
the performance of the two different modes, we measure the runtime of the Probe, the time needed to
translate the Probe output into a model (sub)-graph, to initialize or update the graph model, as well as
to construct or maintain the information flow graph. For the new event-based approach, we measure
these aspects for both the initial event and subsequent change events. In order to trigger change events,
we automatically perform a variety of operations on the virtualized infrastructure. In the particular
measurement of Fig. 7.4 we used the CreateVM operation.
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Figure 7.4.: Runtime measurements (in seconds, log scale) of the existing approach “Static Snapshot” and
the new Cloud Radar approach (“Init" for initialisation and “Event” for change events) for the
four system components in relation to the infrastructure size (number of VMs).

7.4.2 Results and Discussion

Figure 7.4 illustrates the main results of our performance evaluation with the runtime in seconds on the
logarithmic y-axis, and the different environments and sizes in terms of number of VMs on the x-axis.
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We break down the results into measurements for the four system components. The measurements for
the existing approach are shown as the Static Snapshot bars, and the new approach is broken down into
measurements for initialization (Cloud Radar: Init) and events (Cloud Radar: Event). Our measurement
resolution is 1ms and measurements such as the runtime of the probe for events is equal or below that
resolution. Each measurement result is computed as the mean of 10 runs and the standard deviation is
shown as error bars.

How does the new event-based approach compare to the existing full extraction approach? How does the
system scale with the size of the virtualized infrastructure?

First of all, comparing the results of the 150 VM sized realistic (R;5,) and simulated (S;57) environments
show equivalent results, which indicates that the infrastructure simulator in fact behaves accurately and
provides a suitable environment for performing our measurements. Of course, in a realistic environment
our absolute measurements could differ, but the scalability of the system would remain equivalent.
Probe: We observe that both approaches initially scale linearly, although the runtime of the existing
approach is lower compared to the initialization phase of our new one. We suspect this behavior to be
rooted in the more complex construction of the probe output. The existing approach traverses the VMware
inventory and obtains a list of all the managed entities. In contrary, the new approach sets up a filter
and VMware is required to find all entities that match the filter and have not been reported previously.
However, after the costly initialization, the probe reports events in constant time.

Trans: This is the dominating factor in the initialization of the model. Both the existing approach as well
as our new approach perform almost identical for initializing the model, and scale linearly with the size
of the infrastructure. This is unsurprisingly, as both the existing approach as well as the new approach
with Enter events perform a similar translation of creating new objects. The significant performance
improvements lies in translating change events into updates of the model with our new approach, which
scales constantly with the size of the infrastructure, at least for the operations we tested and their resulting
events. To highlight this, consider the S3, o environment with 30,000 VMs: After the comparable
initialization time by both approaches, the existing approach would require a periodic translation of the
entire environment taking 56 minutes, whereas in the new approach each change event can be translated
in 176 milliseconds (the worst-case we measured for our set of operations). This is an improvement of
four orders of magnitude.

Model: Both the model initialization of the existing approach as well as the model update based on events
are almost instantly. In the first case, a new full model is constructed all the time and can override the
existing one, i.e., a simple reference assignment. In the latter case for the operations we tested, the graph
delta remains small and is merged into the existing graph model. For the initial large event in our new
approach, we have to merge a set of graph deltas together, where the size depends on the infrastructure
size, resulting in a linear scalability. This also indicates the worst-case scenario, in case an operation
results in an event that changes the entire infrastructure.

Table 7.1.: Breakdown of Info Flow Runtime (in ms) into Simple/Complex Traversal Rule and SCC Compu-
tation for Init- and Event-based Approaches.

Simple Complex SCC
Init Event Init Event Init Event
Ryso 153 4 151 1 153 48
S150 157 4 90 2 139 52
S1.,000 269 4 592 2 465 138
$10,000 755 6 31,172 2 2,776 1,095
S30000 1,681 4 926,708 2 11,346 4,769

Info Flow: If we break down the information flow analysis (cf. Table 7.1), we observe for the full analysis
a linear scalable evaluation of simple traversal rules and SCC computation. We also see a quadratic
complexity for evaluating the complex traversal rule, which needs to evaluate pairs of port groups in
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our example rule set. The differential approach provides significant improvements for the event case of
Table 7.1 with a rules evaluation that depends on the size of the event and a linear SCC computation.
We discussed potential optimizations for reducing the quadratic complexity of complex rules and SCC
re-computations in Chapter 6.

Analysis: We measured a runtime of 19ms for finding violations of the network isolation policy in the
real environment. This includes finding all violations of the policy, although one could terminate after the
first violation. The VMware infrastructure simulator does not support operations that trigger such policy
violation, therefore our performance measurement is limited to the real environment.

In summary and in the light of the more expensive initialization of the new approach, when does it
actually pay off? We define the break-even of the event-based analysis compared to the static analysis as
the following. Given the cumulative timings for static analysis t,, CR initial analysis t;, and event-based
analysis t,. We define the break-even of the event-based analysis compared to the static analysis for

the number of events x as Eli—ﬁe <1, where t; and t, are required for initialization and followed by x
S S

recurring event processing (either t, or again t, for static analysis). Thus, x > % and for a discrete
S e

number of events follows x = [—fi:? -| Table 7.2 shows the cumulative timings and the break-even ratio
S e
ti—ts

t.—- For instance, consider the 10,000 VM environment Sy, ooo and the cumulative runtimes of both
approaches. The initialization in the existing approach overall takes 693s + 12 and for the new approach
819s £ 16. While follow up model updates require a full periodic execution of the entire workflow in the
existing approach, the new one only requires 1.8s for each change event. Although the new approach is
slightly more expensive in the initialization, even with just one event after initialization it pays off due to
the much more efficient event processing, which is also true for all other environments.

Table 7.2.: Cumulative analysis timings (in ms) and number of events for break-even.

Static CR: Init CR: Event Break-even ratio
Riso 9968 +291 16627 £ 345 70+ 10 0.67 £0.05
S1is0 7515 + 246 10435+ 771 145+ 49 0.40+£0.11
S1000 39931+ 1753 52669 + 1490 215+ 66 0.32£0.06
S10000 69300112487  818554+16340 177819 0.18+0.03
Saoo00  4172772+£243643 5092537 +£75140 7306 £ 622 0.22+0.06

How many events can be processed per second until we run into a backlog? Considering the simulated
10,000 VM environment (Sy o99), We can observe and translate approximately 33 VM creation operations
per minute, bounded by the dominating translation time of 1.8s per CreateVM operation (cf. Table 7.2 for
cumulative analysis timings) and assuming a serialized processing.

7.5 Security Evaluation

We evaluate the security of Cloud Radar in two ways. First, a security analysis argues that all change
events are received with integrity, in face of the given adversary model. Further, we discuss various
approaches how our system can be deployed securely in practice. Second, we test the system’s ability to
detect policy violations for compute, network, and storage resources using randomized operations.

7.5.1 Security Analysis

The security analysis considers the management host creating events and the CR host as separate entities
and considers multiple attack vectors including manipulating network communication through VLAN
re-configuration, and denial of service or dropping communication sessions in the Session Manager. We
propose a practical deployment of Cloud Radar that is secure in the face of an insider adversary, based on
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a small set of assumptions and a deployment pattern, which includes isolation of the reporting network, a
heartbeat signal, and mandatory access control for regular administrators.

7.5.1.1 Assumptions and Deployment Pattern

The threat model of Section 7.2 already introduces that software attacks are out of scope, which includes
that the management host software cannot be manipulated by the adversary. Our analysis is built on the
following explicit assumptions, which form the basis of the deployment pattern.

[secchan] TLS offers a secure channel providing channel confidentiality and integrity, with server
authentication based on a dedicated PKI. The adversary does not have capabilities to establish host
certificates in the certificate tree of the root CA CA,. trusted by CR.

[access] The adversary accesses the virtualized infrastructure through the management interface only.
This implies that the adversary does neither have physical or root access on the physical hosts, direct
access to the hypervisor nor physical access to network and storage. The adversary does not have access
as super_admin, which would allow changes to the permissions.

The assumption [access] is motivated by vSphere Security [VMw13b] best practice, which states that
hypervisor hosts should only be managed through the central management host. This can also be
enforced by putting the hypervisor into lockdown mode, by which no other users than vpxuser, the vCenter
management user, have authentication privileges nor can perform operations on the host directly.

Network Isolation: We need to establish the condition [ netisolation] that the reporting network (between
the management host and Cloud Radar) is isolated from the networks accessible by the adversary to
protect the event channel from interference. A dedicated reporting network net,,. is created for the event
reporting between management host and Cloud Radar. The network isolation is enforced 1) as dedicated
physical networks (building upon the assumption [access]), 2) with a VLAN in the physical switch, where
hypervisor or virtualization administrators do not have privileges, or 3) as a virtual network with a
dedicated VLAN ID, where the administrators do not have privileges to change the VLAN configuration.
The event channel is established as a secure channel ([secchan]) to the management host via net,..
Heartbeat Signal: The condition [heartbeat] models the realisation of a heartbeat signal sent in time
intervals t;,. A heartbeat can be realized by 1) opening the CR probe filter to background noise events,
such as machine utilization, including them into the event stream, 2) a periodic task changing managed
entities scheduled by the super_admin, or 3) CR exercising write access on the managed entities, e.g.,
VMs, to obtain change events directly. It is necessary that the heartbeat signal will be in the event
channel observed by the CR probe. Whereas the first approach is least invasive and does not require write
privileges, it may yield false positives. The two other approaches give a reliable heartbeat signal, yet
require partial write access, either under control of the super_admin or Cloud Radar itself.

Mandatory Access Control: The super_admin sets privileges such that regular administrators only gain
privileges on the management host, but not on the hypervisors according to [access]. The following
privileges are set on the management host: 1) No administrator has rights to revoke a lockdown mode of
a host. 2) No administrator has rights to manipulate net... 3) The administrator privileges for session
manipulation on Sessions are restricted, in particular Sessions.TerminateSession is controlled.
Authentic and Complete View of Topology and Changes: Cloud Radar obtains an authentic and
complete view of the topology of the virtualized infrastructure and its changes. If CR requests version n of
the change events, the management host correctly produces an event e,, which contains all changes after
e,—; up to reception of the request for version number n. For n = 0 the management host provides an
authentic and complete view of the entire infrastructure topology.
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7.5.1.2 Security Argument for Event Integrity and Availability

The foundation of Cloud Radar (CR) to detect security failures is the ability of obtaining all change events
of the infrastructure in an unmodified form. Therefore, we establish the requirements integrity and
availability, and argue that our secure deployment of CR fulfills these requirements.

Integrity

For any n-th event e, received at CR holds that the event is correct, fresh, in order and as it has been sent
by the management host. The management host produces an event e,, which contains all changes after
e,_1 up to reception of the request for version number n, which completes the event chain. We obtain the
order and weak freshness properties from the version number, as an event e, must have been generated
after any event e_,,.

The event e,, is received at CR over a secure channel according to condition [netisolation]. The channel is
established over the dedicated network net,.. and server-authenticated on cert that is in the certificate
chain of trusted CA,., which is inaccessible to the adversary according to [secchan]. Thereby, the
connection is with the correct management host. Further, based on the secure channel of [secchan], we
obtain channel confidentiality and integrity on the event e,,, which is thereby as sent by the management
host. As the adversary can neither interfere with the management host event reporting by the exclusion
of software attacks nor with the network configuration for net,.., the event e, is the correct event sent as
intended by the management host. From [access], we obtain that the adversary could not have changed
the event at the management host or any subordinate host.

Weak Availability

Either all events sent by the management host are received by CR eventually and latest within a channel
timeout t;jmeout OF @an alarm is raised after ty;eout 1S €lapsed.

The network net,.. is modeled as an asynchronous channel, through which messages arrive eventually, the
secure channel is established over it by CR. Observe that even though underlying TCP/IP offers reliable,
ordered and error-corrected communication, it does not give strong timeliness guarantees. Whereas the
secure channel enforces integrity and ordering, it does not offer availability. Because of the in-order
delivery of net, it follows that if e, is received, then all previous events e_,, must have been received
already, yielding that, if the channel is intact, all events sent by the management host are received by
CR eventually and latest within a set timeout ;.o - The condition [netisolation] isolates the network
net,.. from interference by the adversary on the network, while [access] prevents interference on the
subordinate hosts, however this does not rule out availability failures from other root sources, e.g., a
cable fault.

The Weak Availability clause, i.e., an alarm is raised after t;;meout iS €lapsed, is obtained from the condition
[heartbeat]. If the channel waits for a packet or the channel is interrupted, then we have that eventually
tiimeout Will be reached without a packet having arrived at CR. According to [heartbeat], the management
host produces a heartbeat signal after each time window ty,;, < t;imeout- Therefore, we have that the after
timeout Without a message, CR can conclude that the channel is interrupted and raise an alarm. It follows
that availability failures are detected within t;;,eout- The system will try to re-establish the connection
after an interrupt, however for the duration of the re-establishment no security guarantees can be given.

7.5.2 Security Discussion

The integrity and availability of events is essential for a reactive and event-based security system such
as Cloud Radar. The discovery and translation follows the methodology of Chapter 3 where everything
is discovered, in our case all the change events of infrastructure elements are received, and explicitly
translated or ignored.
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As part of our event translation we may deal with objects that are temporary incomplete. In practice these
incomplete objects received a completing change event within a sub-second time frame. However if it
remains incomplete it can impact the detection rate of our analysis. Therefore, we raise an alarm once a
time-out has been reached, and the security operator has to acknowledge the problem. Furthermore, as
part of our model update we enforce invariants on the graph deltas that ensure the consistency of our
model. In particular an update cannot modify the same vertex attribute with different values as part of
the same change event. Further we do not allow deletion and creation of an element simultaneously in
the same change event.

Cloud Radar uses the information flow analysis of Chapter 6, which also implies that the correctness of
the analysis is based on the correctness of its inputs, in particular the information flow rules. In addition
the policies and their configuration as user-defined inputs have to be correct.

7.5.3 Security Testing

For each policy (cf. Section 7.3.4) we determine the operation that may cause a policy violation if used
with a specific parameter. We execute these operations several hundred times with a parameter from
a known set of violating parameters or a complementary random parameter, similar to Fuzzing from
software security testing. Cloud Radar is required to detect a policy violation in the case of a parameter
from the violating set, and otherwise no violation should be detected.

In the case of network isolation, a critical operation is UpdatePortGroup that changes the VLAN identifier
of a port group to a given one. If the new VLAN identifier is conflicting with an existing identifier of a
different tenant or security zone, the policy is violated. A violating VLAN identifier was chosen with a
probability of 1/3. For VM placement, the critical operation is CreateVM that creates a new VM on a
given host. The policy is violated if the given host is not part of the same placement zone as the new VM.
Finally, storage isolation is violated if a VM is reconfigured (ReconfigVM) with a virtual disk that uses as
backend a file already in use by another VM of a different zone.

The security testing uses the real environment described in Section 7.4.1, because the simulated one does
not support all management operations and its networking configuration is not suited for the network
isolation policy. This is not problematic as analysis performance and scalability are not a concern in this
security testing, and a real environment yields more realistic behavior as a simulated environment.

For the network isolation policy, Cloud Radar in fact detected all expected violating operations as policy
violations, and operations with random operations as non-violations. Overall we issued 254 violating
operations and 746 non-violating ones. For the VM placement policy, the system exhibits correct behavior
by detecting 491 violating VM creation operations and reported no violations for 509 non-critical
operations. Finally, 505 operations out of 777 VM storage operations have been correctly identified as
violations, and for the others the tool correctly reported no violations.

7.6 Summary

In this chapter we presented Cloud Radar, a system that detects security failures in virtualized infrastruc-
tures in near real-time. The system monitors virtualized infrastructures for changes and based on these
changes maintains a graph model of the infrastructure. The model is the input to a model-based security
analysis on the infrastructure’s topology. The analysis computes and maintains an information flow graph
for the dynamic infrastructure, in order to determine isolation properties, and tries find violations of
specified security policies. We implemented a prototype of Cloud Radar for VMware environments and
our performance evaluation shows a significant performance improvement of our event-based approach
compared to an existing one that uses static configuration snapshots. The snapshot approach requires
693s in a 10,000 VM simulated infrastructure for extracting the configuration and building the models,
whereas our event-based one only requires 1.8s for each change event after an initialization of 819s.
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8 Proactive Security Analysis of Changes

In this chapter we tackle the challenge of misconfigurations in complex and dynamic virtualized infras-
tructures. We establish a practical security system, called Weatherman, that proactively analyzes changes
induced by management operations with respect to security policies. We achieve this by contributing the
first formal model of cloud management operations that captures their impact on the infrastructure in the
form of graph transformations. Our approach combines such a model of operations with an information
flow analysis suited for isolation as well as a policy verifier for a variety of security and operational
policies. Our system provides a run-time enforcement of infrastructure security policies, as well as a
what-if analysis for change planning.

8.1 Introduction

In combating misconfigurations, insider attacks and resulting security failures, the assessment of configu-
ration changes and rigorous enforcement of security policies is a crucial requirement. It is important to
establish whether an intended configuration change will compromise the security of the system before the
change is deployed. We build a practical analysis system, called Weatherman, that uses a model-based
approach for assessing configuration changes and their impact on the security compliance of a virtualized
infrastructure. We call our system proactive as changes are analyzed before they are deployed.

Facing an intended configuration change, Weatherman needs to establish first how the infrastructure
would be affected by the change. Our operations transition model (Section 8.3.1) covers security-relevant
operations and models their impact on the infrastructure configuration and topology in a graph rewriting
language. For our example, it contains a model of the VMware operation UpdatePortGroup encoding
how VLAN ID changes affect the network. Having established a what-if infrastructure model for the
intended change, the next important question is: How does the information flow and isolation change in
the system? Weatherman performs an information flow analysis in the what-if infrastructure model as an
intermediary step to determine isolation properties (Section 8.3.2). Finally, the infrastructure model is
checked against a variety of security and operational policies, which are implemented as graph matches
and evaluated by the graph transformation engine (Section 8.3.3). Overall, our system establishes whether
a future configuration change will constitute a security compromise and rejects the change if a violation is
detected (Section 8.4).

In combination, the operations transition model, the what-if analysis with dynamic information flow
evaluation and the subsequent graph matching with security policies realize a powerful and versatile
tool. It offers a security analysis for compute, network and storage operations and policies. While we
focus the initial discussions on a simple running example, we stress that a wide range of security-relevant
operations have been modeled along with different styles of security policies, discussed in Section 8.3.3.
Our contributions are the following:

1. We propose the first formal model of cloud management operations, the operations transition model,
that captures how such operations change the infrastructure’s topology and configuration. We
express the operations as transformations of a graph model of the infrastructure, which is based
upon the formalism of graph transformation [Roz97].

2. We propose a unified model that integrates with the operations model the specification of security
policies as well as an information flow analysis suited for isolation policies. We formalize a variety
of policies, such as in the areas of isolation, dependability, and operational correctness using graph
matching.
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3. Based on our model, we design and implement a practical security system, called Weatherman, which
assesses and proactively mitigates misconfigurations and security failures in VMware infrastructures.
We evaluate the performance of our analysis in a practical environment, and we further discuss and
test the security of our system.

8.2 System and Security Model

In this chapter we build on the system and security model of dynamic virtualized infrastructures as
presented in Chapter 7. In Figure 8.1 we illustrate our model of a virtualized infrastructure, which consists
of (virtualized) computing, networking and storage resources that are configured through a well-defined
management interface. We consider multiple administrators with different privileges, where the provider
administrators govern the entire virtualized infrastructure, and tenant administrators manage an assigned
logical resource pool.

Change Plan Security Analysis operates on
Feeiback Weatherman (PDP)
Realization Model of Virtualized Infrastructure
Managdement Policy
Operations Decision vNIC VMs VMs
\Q - Host Host
Provider Admin|_~| & & g
T | sd E o Gwitch? GWiich”
= = ; > 8) O 3t Portgroups Portgroups
8 o X © T
= =l =
=}
/@m’ e s VLAN 2
Tenant Admin Network Storage

Figure 8.1.: The System Model contains a topology model of the virtualized infrastructure and an au-
thorization proxy acting as Policy Enforcement Point (PEP) based on the security analysis of
operations by our Policy Decision Point (PDP).

The main difference is that in this work the model is poised towards a proactive analysis of operations that
are intercepted at the management host. Our system consists of a Policy Enforcement Point that intercepts
the management operations and denies them if they violate a security policy. The Policy Decision Point
evaluates the intercepted operations and decide if they would cause a security policy violation if deployed
to the current infrastructure. Furthermore, we allow administrators to submit change plans directly to the
security analysis system in order to determine before hand if they may cause a security violation.

8.3 A Model of Dynamic Virtualized Infrastructures

We capture multiple aspects relevant for the analysis and integrate them into a unified model based
on graphs and graph transformations. We represent the topology and configuration of the virtualized
infrastructure, establish how the infrastructure can be changed by management operations, and verify the
infrastructure with regard to security policies. As we are focusing on isolation properties, we further need
to determine information flows in the system.

8.3.1 Modeling of Infrastructure Changes

We model the impact of management operations in terms of infrastructure changes using graph trans-
formations. We will briefly introduce the formalism and describe our methodology how we can create a
model for a practical system, followed by concrete examples of models for specific VMware operations.
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8.3.1.1 Modeling Operations as Graph Transformations

We model each operation as a graph transformation rule, which takes the graph representation of the
virtualized infrastructure as input and transforms it into a modified one. According to [Roz97], we define
a graph transformation rule as the following.

Definition 40 (Graph Transformation Rule). A graph transformation rule p, also called a production rule,
has the form p : L — R, where graphs L and R are denoted the left hand side (LHS) and right hand side
(RHS), respectively. The production morphism r establishes a partial correspondence between elements in the
LHS and the RHS of a production, which determines the nodes and edges that hgnye to be preserved, deleted,
or created. A match m finds an occurrence of L in a given graph G, then G = H is an application of a
production p, where H is a derived graph. H is obtained by replacing the occurrence of L in G with R.

An important extension to graph transformations are application conditions that express constraints
on the applicability of a production rule, which includes constraints on the attribute values of vertices.
Further, parametrized rules capture expected attribute values as parameters that need to be satisfied by
the application condition. This is important for our model as management operations are parametrized.
The Operations Transition Model consists of multiple graph transformation rules and captures how
management operations change the topology and configuration of a virtualized infrastructure.

Definition 41 (Operations Transition Model). The Operations Transition Model consists of named and
attribute-parametrized graph production rules which are specified as the set P = {p4,...,p,} . Each rule
corresponds to a parametrized management operation op and models the effects of op on the infrastructure
as graph modifications on the Realization graph model. The name of each production rule corresponds to the
name of the management operation.

The ordering of the rules is not relevant for the modeling as the rules model the operations independently.
However, the ordering becomes important for the analysis (cf. Section 8.4) which performs an ordered
application of a subset of rules with parameter values on a given infrastructure model graph.

8.3.1.2 Modeling Methodology

For any existing real-world virtualized infrastructure like VMware, the API documentation does not
offer a precise formal definition and model, but rather a semi-formal description of the operations. A
contribution of this work is to create a formal model that allows for precise statements to be made
and proved or refuted. It is of course not possible to formally prove that our formal model captures
the informal description, however there is a methodology to obtain a “good” model by combining the
following directions:

1) API Documentation: We follow the API documentation that describes for each operation the func-
tionality, the required parameters as well as the preconditions and effects that the operation has on the
infrastructure. For the relevant operations, we determine the parameters that are security-critical and
which will have an impact on the model when the operation is performed. Overall, the API documentation
provides us with a list of relevant operations, their parameters, and a high-level idea of their impact on
the infrastructure.

2) Infrastructure Change Assessment: In order to understand how the infrastructure is changed in
detail by an operation, we inspect the configuration of the infrastructure before and after the operation
has been issued. For each operation that we have selected based on the API documentation, we vary
the parameter values to determine their different effects, if applicable. For example, varying the VLAN
identifier parameter of a virtual network re-configuration preserves the same effect, whereas varying
the device configuration of a new virtual machine creation may lead to different topology changes, e.g.,
attaching the VM to a different virtual network. We do not only study the differences in the configuration

131



Table 8.1.: Overview of Security-Critical VMware Operations [VMw11].

Operation Description Policy Impact

AddPortGroup Creates a new port group on a given host and virtual switch, with ~ Network Isolation
a name and VLAN ID.

UpdatePortGroup Updates the name and/or VLAN ID of an existing port group on  Network Isolation

a given host.
RemovePortGroup Removes an existing port group on a host given by name. Dependability

UpdateNetworkConfig ~ Updates the network configuration of a host; another means of  Network Isolation
creating or updating port groups.

CreateVM Creates a VM on a host with virtual storage and network re- Compute Placement
sources (modeled as sub-operations).
AddVirtualDisk Creates a virtual disk for a VM with file backend. Storage Isolation
AddVirtualNic Creates a virtual NIC connected to a port group. Network Isolation
ReconfigVM Updates a VM’s configuration, including storage and network re-
sources.
UpdateVirtualDisk Updates the file backend of a virtual disk. Storage Isolation
UpdateVirtualNic Connect a virtual NIC to a new port group. Network Isolation

after each operation, we also investigate the differences in the resulting graph models. The changes from
the graph model of the configuration before the operation was performed and the graph model after
the operation guides us how a graph production rule of the operation may look like. The graph model
changes include new and deleted vertices and edges, as well as attribute changes.

3) Validation with Administrative Tasks: Finally, we also performed common administrative actions
from the graphical management client, which itself issues the documented API operations. We intercepted
and analyzed these issued operations and discovered that the management client makes use of other
operations from the API to perform the same task. For example, to change the VLAN identifiers of a
virtual network component the usual operation is UpdatePortGroup, however the client software issues
the much more general operation UpdateNetworkConfig. We extended our model to include these other
variations of performing security-critical tasks.

8.3.1.3 Modeling of a Practical System

The VMware API (v5.0) consists of 545 methods [VMw11], but many of these operations do not affect
the topology or configuration of the virtualized infrastructure, because they deal with VMware-specific
management and operations aspects such as licensing and patch management, handling of administrative
sessions, or diagnostics and alarms. We identified 95 operations that modify the topology or configuration
of the infrastructure. We model a security-critical subset of VMware management operations as listed in
Table 8.1, which also indicates potential policy violations (cf. Section 8.3.3).

Overall, this subset enables the analysis of security relevant topology and configuration changes in the
areas of virtual networking, storage, and compute resources, and, thereby, the verification of isolation
breaches. We consider changes to the virtual compute, network, and storage infrastructure, such as
the creation of virtual machines, creation or updates of virtual switches and interfaces, and attachment
of storage to virtual machines. Complex operations, such as creating VMs, are broken down into sub-
operations. Although we focus on a subset of operations, the diversity of this subset in terms of resources
and actions shows that our approach and methodology is generally applicable, and would extend to the
remaining operations as well.

From the subset of operations, we present the production rules of two operations: The UpdatePortGroup
operation changes the isolation property of a virtual network, as well as the sub-operation AddVirtualDisk
of the CreateVM operation that connects a new virtual disk to a created VM. The two examples cover a
spectrum of operation classes: First, operations that create infrastructure elements as well as updating
existing ones; Second, operations that work on different resource types, namely, storage and network.

132



Visual Notation of Graph Transformation Rules in GROOVE

The graph transformation rules are illustrated in Fig. 8.2. We selected GROOVE [GdR*11], a tool for
specifying and applying transformation rules, as our graph transformation environment and the rules are
shown in its visual notation. Each rule is represented by a graph that describes both the LHS and RHS
(cf. Def. 40). The elements of such graph transformation rule graphs are:

Graph Vertex (rectangular node) represents vertices of the host graph. The type of the vertex is given as
the label of the node, e.g., a host node in Fig. 8.2a.

Attribute Node (elliptic node) represents attribute values of a graph vertex with the label representing
the value type (string, int). A superscript integer i on an attribute node matches the attribute value
against the ith transformation rule parameter.

Graph Edge is an directed edge between two graph vertices with an edge label, for instance, real for
system model edges or flow for information flow edges. If the edge label has the suffix + it represents a
non-empty path of such edges.

Attribute Edge is an edge between a graph vertex and an attribute node. The edge label represents the
attribute name.

Quantifier Nodes and Edges (dotted line) allow quantification in rules over sub-graphs. The quantifier
is represented as a quantifier node (visually: rectangular, dotted) and quantifier edges labeled with @
connect the applicable sub-graph to the quantifier. Both universal as well as existential quantification
can be formalized. Quantifiers can be nested using quantifier edges labeled with in.

Furthermore, the shapes of graph vertices and edges as well as attribute edges capture the application
conditions and modifications of a graph transformation rule.

Readers (thin line) are nodes and edges that need to be matched in the graph for the rule to be applicable
and which are preserved in the transformation, i.e., they belong to both the LHS and RHS. For example,
the host node in Fig. 8.2a is a reader node. Reader elements form a positive application condition of the
rule, i.e., the rule only matches if the application condition is fulfilled.

Creators (bold line) capture nodes and edges that are created and which only belong to the RHS. For
instance, the vdisk node and its associated edges in Fig. 8.2a are creator elements. These elements are
added to the resulting graph as part of a matching rule.

Erasers (thin dashed) are nodes and edges that need to be matched, and which will be deleted by the
transformation, i.e., only belong to the LHS. In Fig. 8.2b attribute edges are deleted as part of the rule.

Embargoes (thick dashed) are nodes and edges that need to be absent in the graph, in order that the
rule matches. They form a negative application condition. For our policy formalization in Section 8.3.3
we use embargoes extensively.

Conditional creators (thick dashed and bold line) combine creators with embargo elements. Such
creator elements are conditionally created only if the elements are not yet present in the graph. We use
conditional creators for our formalization of information flow rules in Section 8.3.2.

For further introduction and illustrative examples of the GROOVE visual notation we refer to Ghamarian
et al. [GAR"11].

Disk Creation Operation: AddVirtualDisk

AddVirtualDisk (string hostname, string vmName, string storagepool, string filename)

As part of the creation of a virtual machine, a virtual disk is created and attached to the VM, which is
identified by a given hostname and the VM name. Virtual disks are file-based (given by a filename),
and the file is residing on a storage pool, given by a name. The production rule of Fig. 8.2a finds the
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Figure 8.2.: Examples of storage and network operations as modeled as graph transformation rules in
GROOVE.

corresponding sub-graph where the names of host, VM, and storage pool match the rule’s parameters.
New nodes for the virtual disk (vdisk) as well as the file backend (file) are created and connected to the
matched sub-graph by specifying them as creator elements (visually: thick, green). In GROOVE, attributes
of a node are represented by data nodes, visually indicated as ecliptic shapes, that are connected by a
labeled edge, where the label denotes the attribute name. The numeric superscript on data nodes show
that an attribute value is matched against a rule parameter, e.g., the host’s name is matched against
parameter O.

Virtual Network Update Operation: UpdatePortGroup

UpdatePortGroup(string hostname, string pgName, string newPGName, int newPGVlanld)

Using this operation, an administrator can change the configuration of an existing port group. The port
group is identified by its name, as well as the host where it resides on, and the operation allows to change
the port group’s name and VLAN ID. In the rule of Fig. 8.2b, changing attributes is modeled as changing
the edges to different data nodes based on the input parameters. The VLAN ID is not only contained in the
port group nodes, but also in the associated vport nodes, i.e., virtual switch ports. Therefore, changing
the VLAN ID of the port group also requires to change the VLAN ID of all virtual ports associated to that
port group. For this we use the universal quantifier V that applies a sub-rule, given by nodes connected to
the quantifier with @ labeled edges, to all its matches [RK09]. In this case, it updates the vlanld attributes
of all matching vport nodes.

8.3.1.4 Atomicity of Changes

A crucial point is the use of the universal quantifier in the graph production rules. This allows us to
formalize an operation like UpdatePortGroup as an atomic action: the action changes several nodes in the
network simultaneously. Observe that we cannot give a bound on how many nodes will be affected, and
the universal quantifier allows us to change all affected nodes in a single transition. This is both relevant
for modeling and for efficiency of the verification, and in fact a classical problem [LS89, Lip75, Lam90].
For what concerns modeling, our atomic actions are in general not equivalent to a model with “small”
transitions that involve changing only one node at a time for example. To see that, suppose administrators
accidentally issue two conflicting UpdatePortGroup operations. In a model with “small” transitions, the
interleaved execution of the changes may then lead to an inconsistent state that is not reachable by
any “big” atomic UpdatePortGroup transition. In a way this model forbids the “parallel” execution of
conflicting updates and only allows what is equivalent to their serialization.
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8.3.1.5 Operations Modeling Summary

We use graph production rules to model the effects on the configuration and topology of a virtualized
infrastructure for a variety of security-critical management operations. We propose a methodology how
such a model can be established for a practical virtualization system, such as VMware. The methodology
builds on an informal API description, comparing the graph models before and after an operation has
been applied, as well as validating the expected changes using common administrative tasks.

8.3.2 Dynamic Information Flow Analysis

Our information flow analysis computes potential information flows within the infrastructure, and thus
enables the system to determine isolation failures between tenants. Our operations model lead to a
dynamic system model and therefore requires a dynamic information flow analysis.

The information flow analysis of Chapter 3 operates on a static system model and uses a graph coloring
and traversal approach based on a set of traversal rules. The traversal rules define for a pair of connected
Realization model vertex types if the traversal and coloring should proceed or not. The rules further
consider the traversal direction, vertex attributes, and the current graph color. We adapted the existing
traversal rules, which capture best-practices on virtualization and network security, and formalized them
as graph production rules. However, the challenge of such a formalization is that a direct encoding of the
graph coloring approach in GROOVE would result in an expensive blow-up of the state space. Therefore
we opted for the construction of an information flow graph instead of performing a graph coloring. We
formalize the approach of dynamic information flow graphs (cf. Chapter 6) as graph transformations in
GROOVE, in order to integrate it in our overall analysis approach. A set of graph production rules capture
trust assumptions on the isolation of particular infrastructure elements, and construct the information
flow graph by introducing edges that denote if flow is either permitted or denied.

This formalization has multiple advantages. First, many of the original graph traversal rules decide graph
traversal, i.e., information flow, for a pair of vertices independent of the current node color. We can
greedily introduce information flow edges between all such vertices without causing a large state space,
leveraging GROOVE’s universal quantifiers [RKO9]. Second, we have a direct mapping between edges and
conditions in the realization graph and the constructed information flow edges. This allows us to react on
changes in the realization model and determine their effect on the information flow graph. Finally, we can
determine connectivity between any pair of vertices after the information flow graph has been computed,
instead of performing a new graph coloring from each information sink. In particular in combination with
the computation of strongly connected components on the information flow graph, we can efficiently
determine such connectivity.

8.3.2.1 Information Flow Rules and Application

We differentiate between three kind of information flow rules: A simple rule describes information flow
between a pair of adjacent vertices given by their types with potential conditions on the vertices’ attributes.
A default rule is a simple rule that matches any pair of adjacent vertices without any conditions. Finally, a
complex rule describes information flow between non-adjacent vertices.

Simple Information Flow Rules

The first kind of rules are used both when the information flow is computed for the first time on the
initial graph, or when new edges are added. They are simple in the sense that they work on directly
adjacent nodes connected by a Realization model edge (real), and either introduce a directed information
flow edge for flow or noflow. Fig. 8.3a shows a simple information flow rule that stops information
flow between a host and a virtual machine (vm) by creating bidirectional noflow edges between them,
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Figure 8.3.: Examples of different kinds Information Flow Rules modeled in GROOVE as Production Rules.

if not already present. This captures the (arguable) trust assumption that no side-channel information
leakage exists between virtual machines on the same host [RTSS09]. The noflow edge is created with a
conditional new, i.e., it is only created if not already present by combining a creator and embargo edge.
Applying the simple rules will eventually terminate when all pairs are connected by either a flow or
noflow edge. We design the rules to be confluent, i.e., whenever more than one explicit rule is applicable,
it does not matter for the result which one we take first. We can thus use the universal quantifier ¥>°,
which requires at least one match for the rule to be applicable, to express that we apply the production
rule to all possible matches greedily (i.e., we do not have a state explosion).

Default Rule

The above simple rules typically represent trust assumptions on isolation properties of elements in the
infrastructure and therefore introduce noflow edges. The flow edges are conditionally introduced by a
default rule, as shown in Fig. 8.3b, if neither a flow nor noflow edge are present between a pair of nodes.
The rule is applied when no more simple rules are applicable. Thus, the default means that we assume
information may flow when the simple rules do not tell us otherwise. This may be too pessimistic, but
with this over-approximation we are generally on the safe side. We achieve the operational aspect by
designing simple GROOVE rule application strategies, in this case to first apply simple rules as long as
possible and then apply the default rule as long as possible, i.e., until all node pairs have been evaluated.

Complex Information Flow Rules

A direct encoding of the original graph coloring of Chapter 3 is not suitable in GROOVE as the change in
the graph state leads to an expensive blow-up of the state space. A feasible alternative is the introduction
of tunneling edges representing the pairs that need to have the same coloring, i.e., allowing a flow, as
discussed in Chapter 6. As an example, Fig. 8.3c shows a production rule that creates a tunnel edge
between two VLAN endpoints that are not necessarily directly connected by a real edge, but which are
connected through a path of flow edges. Here, two VMware port groups, which are modeled as portgroup
with a VLAN identifier, are hosted on different virtual switches, and the rule fires for pairs of portgroups
with the same VLAN identifiers, if the underlying switches are connected. A similar rule exists when two
port groups are connected to the same vswitch.

Adjust Existing Information Flows
The dynamic information flow analysis needs to adjust the existing information flows if the Realization
model graph changes. The removal of information flow edges that are connected to removed nodes is
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covered by the underlying formalism (Single Push-Out [Roz97]) as dangling edges are removed. For each
pair of nodes that are no longer connected by a real edge, but still feature an information flow edge,
we need to remove the flow edge. This is accomplished by two production rules similar to the simple
information flow rules, but with two untyped nodes, a condition that no real edge is present, and the
removal of either a flow or noflow edge.

The information flow edges that are based on changed attributes are recomputed if their predicates do
not hold anymore. That means, for each information flow rule that introduces an information flow edge
based on an attribute condition, such as the VLAN ID attribute dependent rule of Fig. 8.3c, we have
an adjusting production rule that verifies that the attribute condition still holds; if not, it revokes the
information flow edge. Adjusting the information flow graph based on changes in the Realization model
may further influence connectivity-dependent information flow edges, such as the ones produced by the
complex portgroup rule. Similar to an adjusting production rule for attribute changes, we also have a
production rule that deletes flow edges if their connectivity condition is no longer satisfied.

8.3.2.2 Information Flow Analysis Summary

We formalized the dynamic information flow analysis of Chapter 6 using graph transformations in GROOVE.
We conclude with discussing the advantages and disadvantages of this formalization. GROOVE provides
universal quantifiers that allows us to apply a rule to all matching edges in one state transition, thereby
reducing the state space. Rules with a conditional new are only applied to non-evaluated edges which
ensures the termination of our algorithm when all edges have been evaluated. The GROOVE control
language provides a variety of statements for the application of rules, including, alap for applying graph
transformation rules as long as possible, choice to select from a set of available rules, and else if a rule or
set of rules do not match anymore.

However, GROOVE also bears limitations in formalizing our approach, in particular handling rule de-
pendencies. In the generic approach of Chapter 6 we handle rule dependencies through validating the
ordering of rules and inherit the conditions of mismatched child rules. In the GROOVE formalization we
require explicit adjusting rules that check for condition invalidation and that handle the default cases.
In the case-study of this work we are able to design the rules to be confluent and thereby do not have
inter-dependencies, except for the default rule that handles unmatched types.

8.3.3 Infrastructure Policies as Graph Matches

The final piece of our analysis effort is the specification of security and operational policies. We formalize
a wide variety of practical policies, such as isolation of security zones and prevention of single point of
failures, as graph matches. Instead of production rules that transform the model, the policy rules only try
to match a given graph pattern.

We usually express the security policies as attack states, i.e., a state of the topology or configuration
that violates the desired security properties. Instead of verifying that a security property holds for the
entire infrastructure, we try to find violations. However the formalism and analysis allow for both the
specification of positive and negative policies. The analysis stops, i.e., finds a violation, if a propositional
formula of the form AttackPolicy, V —PositivePolicy, VAttackPolicy, ... is satisfied. That is, an attack
state has been found when an attack policy has matched, or a positive policy no longer matches. Attack
state policies have an advantage in the root-cause analysis of policy violations, since the analysis returns
the matching part of the infrastructure that causes the violation, i.e., the attack state. Whereas for positive
policies, the analysis does not provide a reason why a policy rule no longer matches.

In the following we present a subset of policies that stem from security requirements of practitioners of
infrastructure cloud deployments. The policies span compute, network, and storage resources, and make
use of our information flow model to determine isolation properties.
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Figure 8.4.: A variety of Security and Operational Policies modeled in GROOVE as Graph Matches.

Strict Security Zone Isolation: We represent tenants as security zones which group together infrastructure
elements, such as virtual machines, into zones. Each security zone is represented as a single vertex
of type seczone with directed contains edges, that represent zone membership, to Realization model
vertices. The zoning of elements is a policy setup performed by a security operator.

In this policy we require a strict isolation, i.e., no information flows, between any pair of zoned
infrastructure elements that are not members of at least one common security zone. With the example
of VMs as security zone members, we show both a positive and negative specification of this policy.
Although we use VMs as an example, any infrastructure element can be grouped into security zones.
Fig. 8.4a shows a negative/attack specification of the policy: We have a policy violation for a pair of
zoned VMs that are connected by an information flow path (flow+) if they are not members of the same
security zone. The statement flow+ is a regular expression on edges and requires at least one flow edge.
On the other hand, a positive specification of this policy (Fig. 8.4b) states that for all zoned VM pairs,
which can communicate, there must exists at least one zone that contains both VMs.

We allow infrastructure elements to be part of multiple security zones, and our policy expects at least
one common zone for element pairs with information flow. A problem arises when a multi-zoned
element facilitates information flow between single-zoned elements. For example, if a VM acts as a
firewall and is part of two security zones, then VMs of one zone may communicate with VMs of the
other zone via the firewall VM, which is a violation of strict isolation. We deal with such inter-zone
trusted elements with the guardian isolation policy (Section 8.3.3.1).

138



Compute Placement: The policy mandates the assignment of computing resources, that is on which
physical hosts virtual machines must run. The motivation stems from both performance and availability
reasons as well as security and legal requirements. Imagine that VMs must run on hosts from a particular
geo-location due to privacy laws and data security requirements. By grouping physical hosts and VMs
together into placement zones, similar to the previous security zones, this policy is violated if a VM is
hosted on a physical server of another placement zone or no zone at all (cf. Fig. 8.4e). A zoned host
can run VMs that are not part of any zone.

The related security concern of side-channel attacks due to VM co-location on the same physical
host [RTSS09] is covered by the security zone isolation policy. The trust assumption if a particular
hypervisor provides strong VM isolation or not is captured in the user-configurable information flow
rules (cf. Section 8.3.2). From practical security policies we learned that co-locating different tenants is
allowed only for a particular set of hypervisor products that are considered trusted.

Shared Storage Isolation: An isolation breach happens when two virtual machines of different tenants
share the same storage device. We can approach this policy from two directions: Either rely on the
expressive information flow analysis and the security zone isolation policy to detect such a violation, or
directly find such suspicious patterns in the Realization model. We implemented the latter way which
can be efficiently matched without any path finding.

8.3.3.1 Policies with Information Flow Path Conditions

We are also dealing with policies that have requirements on the information flow paths. For example, the
guardian isolation policy requires that a trusted component, such as a firewall, is part of an information
flow path between elements of different zones. With regard to single point of failures, a policy specifies
the requirement of at least two fully disjoint information flow paths between two elements.

To express such policies, we can no longer rely on the flow+ path construct, because we cannot inspect
the found paths. We model an explicit path finding with traversal rules that add vertices to a path vertex
with directed edges to denote path membership. The state exploration applies the traversal rules, which
perform a graph traversal on flow edges, and constructs all possible paths between pairs of start and end
nodes. We can now express policies that verify conditions on the found paths.

Guardian Security Zone Isolation: Given a pair of elements that are not members of a common security
zone and that are connected by an information flow path. It is mandatory that the communication
is mandated by a trusted guardian, i.e., a vertex flagged as guardian must be part of the information
flow path between the pair (cf. Fig. 8.4c). Additionally, the guardian must share a security zone with
each element of the pair (cf. Fig. 8.4d). The first policy is violated if there exists a path between a
pair of VMs, which do not belong to a same security zone, and the path does not contain a VM flagged
as guardian. The second policy catches the violation that a guardian VM exists on the path, but the
guardian does not share a security zone with either the start or end VM. The negative edge labeled with
+ represents an OR condition for the two negative conditions of the VM and guardian zone matching.

Multiple Disjoint Paths: We define a dependability zone as a group of infrastructure elements that require
mutually redundant fully disjoint paths. The motivation is to prevent single point of failures between
dependent infrastructure elements. Fig. 8.4f shows the corresponding rule as an attack state matching.
We are using a universal quantifier with the ability of counting the number of paths between a pair of
nodes of the same dependability zone (depzone). The policy is violated if the paths count is less than
two, or any redundancy factor that is required.
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8.3.3.2 Infrastructure Policies Summary

The formalization of policies using graph transformation and in particular also the usage of the GROOVE
tool shows that this approach is both expressive as well as usable. We demonstrated a variety of policies
ranging from zone isolation, placement of virtual machines, to the prevention of single point of failures.
This covers the policy areas of isolation, operational correctness, and failure resilience that have been
introduced for virtualized infrastructure policies in Chapter 4. We showed the formalization of those
policies as graph matches in GROOVE, and further explored different ways to express policies, such as
negative and positive matching. Besides an expressive and general-purpose approach, the usability is
equally important so that end-users, such as security administrators or auditors of cloud environments,
can specify new policies. GROOVE offers a graphical editor to develop new production rules, in fact the
policies shown in Fig. 8.4 have been develop graphically and exported as-is. This provides an intuitive
and efficient way of specifying new policies.

8.4 Automated Analysis: Design and Implementation

Weatherman provides an automated analysis of configuration and topology changes in virtualized in-
frastructures. Its architecture, as shown in Fig. 8.5, obtains all the necessary inputs for the analysis
and invokes GROOVE as the graph transformation engine. Based on this architecture, we describe two
application scenarios for change management (Section 8.4.3) as well as for run-time enforcement of
security policies and the mitigation of misconfigurations (Section 8.4.2).
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Figure 8.5.: The system architecture consists of i) Configuration Discovery & Translation on the left, which
extracts the infrastructure configuration and builds the Realization model; ii) the Orchestrator
in the middle, which prepares the graph grammar for the analysis based on all inputs; iii) and
the Graph Transformation on the right that employs GROOVE.
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8.4.1 System Architecture

The system architecture, as shown in Fig. 8.5, consists of i) Configuration Discovery & Translation on the
left, which extracts the infrastructure configuration and builds the Realization model; ii) the Orchestrator
in the middle, which prepares the graph grammar for the analysis based on all inputs; iii) and the Graph
Transformation on the right that employs GROOVE.

The architecture is an extension to the analysis architecture originally proposed in Chapter 5. The
orchestrator now also includes the user-configurable information flow rules as well as the operations
transition model. We employ a different analysis backend, that is a graph transformation engine rather
than set-rewriting model checkers or FOL theorem provers.

Configuration Discovery & Translation

The configuration extraction and model population for the virtualized infrastructure is based on the
method of Chapter 3 and also incorporates the updating of the model when the infrastructures changes
(cf. Chapter 7). This is crucial for the run-time enforcement of security policies as the underlying
infrastructure constantly changes and the change operations have to be evaluated against a model of the
latest infrastructure configuration.

Orchestrator
The orchestrator prepares the graph grammar for the analysis with GROOVE and includes the following
elements:

* Host Graph: The initial graph for the graph transformation is the latest Realization model, which is
serialized into an XML graph format for GROOVE.

* Transformation Rules: The transformation rules for the information flow analysis as well as for the
operations transition model.

* Graph Matches: The security policies are expressed as graph matches, i.e., graph transformation
rules that neither add nor remove elements from the graph.

* Control Program: The control program guides the application of the information flow and operations
rules. The program specifies the order of operations as well as their parameters.

With regard to obtaining the required inputs, the involvement of the user is kept to a minimum as we are
striving for an automated approach. The rules for the automated information flow analysis as well as the
security policies come as pre-defined sets, and only in specific cases can/need to be extended or modified
by the user. Security policies may require further input from the user, such that virtual resources need to
be assigned to security zones for the zone isolation policy.

Graph Transformation

We employ GROOVE for the graph transformation and analysis once the orchestrator prepared the graph
grammar and control program. GROOVE will interpret and execute the control program for the given
grammar. It will apply the information flow rules as well as the rules for the operations that are specified
in the control program with their parameters.

Of particular interest is the potential violation of a given security policy once the operations have been
applied and the information flow computed. Recall that a policy is violated if a propositional formula
of the form AttackPolicy, V —PositivePolicy, V AttackPolicy, ... is satisfied, i.e., either an attack policy is
satisfied or a positive policy is no longer matched. GROOVE provides the concept of acceptors that indicate
when such a state, a result state, is found. We employ different acceptors:

* Invariant Acceptor: Given a single transformation rule, this acceptor fires when either the rule is
applicable (in positive mode) or the rule is no longer applicable (in negative mode). Note that the
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given rule must only be applicable and not actually applied. GROOVE evaluates the acceptor for
each new graph state. The acceptor only works for a single attack or positive security policy. The
acceptor’s mode has to be set to positive for attack policies and negative for positive policies, that
is, the acceptor succeeds when an attack policies is applicable or when a positive rule is no longer
applicable.

* Application Acceptor: This acceptor succeeds if a single given rule has actually been applied. This
differs to the invariant acceptor where a rule only has to be applicable or not. The acceptor only
works for a single attack state policy and the control program needs to explicitly try to apply the
attack state rule after the operations and information flow rules have been applied.

* Formula Acceptor: Unlike the previous acceptors, this one can match against multiple attack and
positive policies. A propositional formula, in the previously discussed form, is given and the acceptor
succeeds when the formula is satisfied. Similar to the invariant acceptor, the rules must either be
applicable or not.

The difference between the acceptors in terms of rule applicability and actual application of rules is
important for the efficiency of our analysis, because we differentiate between a greedy and non-greedy
analysis. In the greedy variant, we try to find a policy violation as early as possible and may terminate
the analysis early. In the non-greedy analysis we apply the operations and information flow rules and
only then determine potential policy violations. Typically, the greedy analysis is preferred for its potential
early termination. However, if the current infrastructure already contains a policy violation, the intended
operations are not evaluated, although they may fix the cause of the current policy violation. Therefore,
we have to use a non-greedy analysis in that case.

We can instruct GROOVE on how many result states should be found before terminating the application
of further transformation rules. For the greedy analysis with its early termination, we want to find one
possible violation of a security policy. In many use cases finding a policy violation as soon as possible is
enough rather than finding all possible violations. Each result state is an instance of the infrastructure
where a policy is violated. As discussed previously, attack state policies have an advantage in the root-
cause analysis, since the analysis returns the matching part of the infrastructure that causes the violation,
i.e., the attack state. Whereas for positive policies, the analysis does not provide a reason why a policy
rule no longer matches.

GROOVE supports multiple different graph exploration strategies, i.e., the way how the transformation
rules are applied. In our case, we employ a linear exploration strategy, because our rule application
is strictly guided by the control program. In terms of model checking, GROOVE also provides a full
state space exploration that would analyze the interleaving of operations as well as evaluating potential
operations that could have been applied and which would lead to a security policy violation. We consider
this kind of analysis as future work that builds upon the modeling and analysis results of this work.

8.4.2 Run-time Analysis of Changes

Run-time analysis enables automated mitigation of misconfigurations and enforcement of security policies.
To achieve this goal, we introduce an authorization proxy that acts as a reverse HTTPS proxy in front of the
otherwise shielded management host. The proxy intercepts management operations and inspects them for
the analysis. The proxy keeps sessions for each logged in administrators and associates the operations with
them. Operations and configuration changes are only forwarded by the proxy to the management host if
the Weatherman analysis indicates no security policy violation. In a secure deployment (cf. Section 8.5.1),
it allows to protect virtualized infrastructures from malicious adversaries.

The communication in front of the manager is usually standardized: VMware and Amazon EC2 manage-
ment operations are SOAP-based, whereas OpenStack is REST-based. These formats are easily inspected.
In addition, the proxy tracks session states derived from the the user-login and the infrastructure manager
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session cookie, to distinguish sessions of multiple administrators interacting with the infrastructure
manager concurrently.

The Policy Decision Point (PDP) of the authorization proxy translates intercepted management operations
into our operations transition model and into a change plan in the GROOVE control language. We have
translation modules for all covered operations. For instance, from an UpdatePortGroup operation the
proxy extracts the host, identifying port group name, new VLAN identifier, as well as new port group
name. The PDP then delegates the change plan analysis to Weatherman, which analyzes the intended
changes. The Policy Enforcement Point (PEP) only accepts the intercepted operations if they are compliant
with the policies; otherwise, they are rejected. The authorization proxy refrains from forwarding the
management operation in the reject case, i.e., they are not deployed in the actual infrastructure. It signals
an error back to the administrator client, including the policy violation as data for diagnosis.

The run-time analysis might block management operations in two cases: Hard blocking occurs if the
authorization proxy rejects a management operation, but the administrator might need to override the
security policy in an emergency, which could be allowed by a trusted super-administrator. Soft blocking
occurs due to the delay the analysis adds and may be precarious if the expected time between management
operations is smaller than the expected analysis time.

8.4.3 Change Plan Analysis

The goal of the change plan analysis is to support the planning of complex configuration changes and
to verify their security compliance. The focus of this complementary approach lies on the planning of
potential changes and perform what-if analyses, whereas the run-time analysis inspects the operations
that are currently deployed. In fact, change management, and change plans in particular, are often
employed as part of IT infrastructure operation workflows and processes. In our case, an administrator
drafts a sequence of desired changes that he wants to be provisioned.

The crucial question is: Will the proposed changes render the infrastructure insecure? To answer this
question, the administrator submits a change plan that contains a sequence of operations with their
parameters to Weatherman. The analysis system then uses GROOVE to apply the changes to the graph
model of the infrastructure and verifies the resulting infrastructure state against the desired security
policies. By that, the tool can establish a what-if analysis and determine what security impact the intended
changes will have on the infrastructure.

If the new graph model obtained from the application of the changes violates the security goals, the tool
notifies the administrator to reject the proposed change plan and provides the analysis output of the
matched policy violation as diagnosis. Otherwise, the tool returns that the intended changes are compliant
with the security goals, after which the administrator can provision the changes to the infrastructure.

8.5 Evaluation

8.5.1 Security Analysis

The analysis is based on the system model of Section 8.2 and the run-time analysis (Section 8.4.2):
Weatherman is deployed with an authorization proxy (PEP) that intercepts management operations,
forwards them to the policy decision point (PDP) for analysis, and which in turn issues an accept/deny
decision. We establish a secure deployment that allows to obtain the integrity property based on a small
set of assumptions.

* Limited Access [access]: The adversary accesses the virtualized infrastructure through the manage-
ment interface only, which can be enforced by placing hosts into lockdown mode [VMw13b], where
direct hypervisor configuration access is forbidden, with no privileges to revoke it. Further, this
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implies that the adversary does neither have physical or root access on the physical hosts, direct
access to the hypervisor nor physical access to network and storage. The adversary does not have
access as super_admin, who manages the privileges. Weatherman and the authorization proxy are
deployed in a hardened configuration and thereby placed under [access].

Network Isolation [netisolation]: The management network is isolated from adversarial access,
which implies that the management host cannot be accessed by the adversary directly, but only
through the authorization proxy. We call the network between authorization proxy and management
host net,.., either enforced 1) as dedicated physical network, 2) as VLAN in the physical switch,
where virtualization administrators do not have access, or 3) as a virtual network with a dedicated
VLAN identifier, where the administrators do not have privileges to change it. Weatherman and the
authorization proxy are deployed in net... and their communication with the management host is
covered by [netisolation]. To strengthen this assumption further, the entities of net,,. communicate
over secure and mutually-authenticated channels.

* Authentic View and Faithful Model [authenticview]: Weatherman has an authentic view of the

topology and configuration of the infrastructure as well as a faithful model of it, including the
consequences of management operations. For the infrastructure model we rely on the discovery and
translation methodology of Chapter 3, in particular as discussed with regard to the security aspects
in Section 3.4. For the operations we rely on the modeling approach introduced in Section 8.3.1.
The Realization model provides a faithful graph representation derived from the actual configuration
as the structure is encoded there. The operations model captures how individual management
operations change the state of the infrastructure and thereby the Realization model.

Definition 42 (Integrity of Run-time Analysis). If a set of management operations S has been provisioned to
the virtualized infrastructure, then Weatherman has previously verified S with respect to the specified security
goals and issued an accept decision and the management host consequently provisioned S.

We pursue the argument by back-tracking starting from a set of management operations S received at the
management host.

* Integrity of communication: We know that the management network net... between management

host, authorization proxy and analysis is covered by [netisolation] and gain integrity on S and
on topology data. As the management host received S at the management network, it must have
been forwarded by the authorization proxy upon an accept decision from the analysis (PDP). The
analysis thereby must have verified S under the given security policy and issued an accept decision.

View equivalence on the topology: From the assumption [authenticview], we obtain both the faithful
Realization model of the topology and representation of consequences in the operations model as
necessary conditions. Given that authentic view and faithful model, the tool can only have issued
an accept decision, if none of the alarm states defined in the security policy matched the what-if
state of the topology amended with the management operations of S.

View equivalence on S: Weatherman and the authorization proxy are protected from the adversary’s
direct influence by [access]. The management operations S are transferred between authorization
proxy and Weatherman with integrity, by which Weatherman analyzes the very same S as staged
for provisioning at the authorization proxy. We have that the S received at the management host
must have been the same submitted at the authorization proxy and analyzed by Weatherman, which
could only have been forwarded if a what-if analysis did not match an alarm state.

* Exclusive provisioning through the management host: Finally, given the [access] condition, we have

that management operations can only be provisioned through the management host and that
the adversary cannot access hypervisors and physical hosts directly. Thereby, S must have been
provisioned by the management host itself after the verification and an accept decision.
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Discussion

The run-time analysis (Section 8.4.2) offers protection against malicious insiders, while the change-plan
analysis (Section 8.4.3) offers non-malicious administrators a way to verify changes before provisioning.
This approach benefits system availability, since honest administrators can evaluate their change plans
pro-actively to gain confidence that their changes will not be denied at run-time.

The security analysis hinges on the authentic view of Weatherman when it comes to the topology structure
and the consequences of management operations. Even though Section 8.3.1 seeks to establish a faithful
representation and a systematic approach to validate the model against reality, it is still the case that
“the map is not the territory”. The Realization and operations models are likely to suffer from subtle
differences to the real configuration. Our systematic operations modeling and infrastructure discovery
methodologies aim to reduce these differences. We further empirically evaluate the operations model
in a real infrastructure environment and test the detection of expected violating operations as part of
our security testing, which cover the entire workflow of change discovery, infrastructure model update,
operations model, information flow analysis, and policy verification.

The effectiveness of Weatherman’s analysis largely depends on the quality of the input specifications: First,
the information flow rules represent the trust assumptions on isolation properties and determine which
components are assumed to pass on information. We employ the information flow analysis of Chapter 6,
but in a simpler form without the SCC optimization. Second, Weatherman only finds attack states for
configuration changes as provided in the specified security policy. Its analysis offers a model checking for
these attack states; it does not constitute a security proof. We rely on GROOVE to correctly apply our graph
transformation rules on the given host graph with the control program that guides the application of rules.
GROOVE has been applied to a variety of different case studies and matured over years of development.
One potential attack vector is the complexity of SOAP that can be exploited to break the proper inspection
of the web service requests within the authorization proxy. Somorovsky et al. [SHJ*11] show successful
attacks against the authentication of SOAP-based cloud management interfaces. However, this potential
attack vector is rooted in a software vulnerability of parsing SOAP messages, not a potential inherent
security flaw in our architecture. Our threat model denotes that software attacks are out of scope.

Security Testing

Besides arguing about the security of our system, we systematically test its ability to detect known
violating operations and differentiate them from non-violating ones, on the operations set of Section 8.5.2
(cf. Fig. 8.6). For each operation, we probabilistically select parameters either from a set of violating or
non-violating ones. We issue the operation to the authorization proxy with an expectation that for the
violation case we obtain a reject decision with a particular policy violation as the reason. Otherwise, for
non-violating parameters, the operation should be accepted. Weatherman detected all violation cases
and behaves as expected. Clearly, security testing and modeling are going hand-in-hand as an iterative
process, in which we make the experience that corner cases discovered in security testing serve well to
improve the model and to close the maps-territory gap.

8.5.2 Performance Measurements

We empirically evaluate and discuss the performance of Weatherman in the case-study of a semi-production
environment. We operate in the run-time analysis mode, which intercepts and analyzes operations, and
we are interested in the performance of our analysis, in particular the application of the operations model
and the information flow analysis.

The environment consists of 2 physical hosts and over 100 virtual machines. Weatherman itself runs in a
Linux VM with 12 vCPUs, 12 GB RAM, and Java 1.7. We issue a variety of operations to the authorization
proxy of Weatherman. These include the creation of virtual machines, virtual network interfaces, as well
as virtual disks. Further, we change the VLAN identifier of a port group. This set of operations aligns with
our subset of VMware operations (cf. Table 8.1) and covers all types of infrastructure resources as well as
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Figure 8.6.: Time measurements for the analysis of a variety of operations, including two violating ones
(the last two). We measure the times for the graph serialization, GROOVE start-up, initial and
adjusting information flow analysis, as well as applying the change operation.

different kinds of operations. Further, we issue operations in a policy violating form to show how the
analysis may stop early once a violation is found.

Fig. 8.6 shows the results of our performance evaluation with different operations on the y-axis, and the
mean run-time measurement in milliseconds for 30 rounds on the x-axis. A first observation is that the
majority of the analysis time for this environment is spent on serializing the graph model and initializing
GROOVE, which loads the grammar including the graph model. This is an implementation limitation
as GROOVE was not designed to be integrated into another application and requires to load a grammar
from the filesystem. As part of the actual analysis, we observe that the times for the initial and adjusting
information flow analyses are the dominant factors. Applying the operation to the graph model is almost
negligible. Note that in the case of violating operations, the analysis can terminate early, i.e., not complete
the adjusting information flow analysis, once a violation was found. Overall, the performance results for
this environment, i.e., obtaining analysis results in under a second, are suitable for both run-time analysis
and change planning.

8.5.2.1 Discussion on Scalability and Optimizations

We studied the scalability of Weatherman with a VMware infrastructure simulator, which is part of the
official VMware vCenter server appliance. For a simulated environment with 1000 VMs, which resulted in
a Realization model graph with 4121 vertices and 6140 edges, we obtained an overall analysis time of
253s for finding a violation in a UpdatePortGroup operation. This makes our approach suitable for the
change plan analysis, but causes a long soft blocking for a run-time analysis. In a simulated environment
with 10000 VMs (41201 vertices, 61400 edges) GROOVE ran out of available memory (12GB). In another
case study reported by Smid and Rensink [SR13], GROOVE showed similar performance where in a case
with 10000 elements GROOVE ran out of memory on a 10GB machine. A distributed variant of GROOVE
with state compression has been proposed by Kant [Kan10], where an up to 52 times memory reduction
has been achieved in one case.

In terms of performance comparison with the approach of Chapter 7, we observe for the real environments
(size 100 respectively 150 VMs) a similar analysis time of 480ms for Weatherman respectively 476ms for
Cloud Radar in the initial mode in the case of finding a VLAN ID update violation. However, in terms of
scalability, Cloud Radar shows significant better performance for larger environments in particular in the
event-based mode.

We stress that establishing the models, methodology, and analysis system has been the primary focus of
this work, and not providing an optimized and scalable analysis. We now outline multiple directions
of optimizations and scalability improvements. A short-term optimization is to reduce the size of the
Realization model graph by removing nodes of types that are not addressed by production rules of the
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grammar. Possible long-term optimizations are to transform GROOVE graph grammars into native code
(an approach employed by GrGen [GBG*06]), to exploit a parallel processing of production rules (in
particular for rules with universal quantifier and the confluent simple information flow rules), and to
leverage existing large-scale graph processing framework, which however are not yet aimed for graph
transformations.

8.6 Summary

In this chapter, we tackle the problem of misconfigurations, insider attacks and resulting security failures
in virtualized infrastructures. Our solution consists of a practical tool called Weatherman that employs
a formal model of cloud management operations, an information flow analysis to determine isolation
properties, and a policy verifier in order to proactively assess infrastructure changes with regard to their
security impact. For instance, we are able to detect and mitigate changes that i) break the network isolation
of tenants, ii) create virtual machines in the wrong location, and iii) introduce single point of failures.
We offer the run-time enforcement of security policies as well as change planning for what-if analyses.
While for concreteness we focus in this work on a particular practical system and goals, we believe that
our work is a first step towards a general verification methodology for virtualized infrastructures. One key
aspect of our approach is the use of graph rewriting, which offers an expressive and intuitive method for
formalizing the operations, information flow analysis, as well as policies.
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9 Conclusions

This chapter summarizes and discusses the research contributions of this dissertation. We further highlight
the key design decisions that we made, how they shaped the scope of this work, and we discuss potential
directions of future work that build up on our contributions and expand on the design scope.

9.1 Research Summary

In this dissertation we addressed the problem that complex, scalable, and dynamic virtualized infras-
tructures suffer from misconfigurations, malicious insiders, and system vulnerabilities, which ultimately
lead to security and operational failures, such as isolation breaches. We therefore proposed the following
hypothesis in Section 1.2:

It is possible to model and analyze complex, scalable, and dynamic virtualized infrastructures
with regard to user-defined security and operational policies in an automated way.

We developed a practical analysis framework for virtualized infrastructures that allows operators to
express security and operational policies as well as to analyze and maintain the infrastructure with regard
to these policies in an automated way.

9.1.1 Overview and Comparison of Tools and Approaches

In Table 9.1 we provide an overview of the different tools and approaches as part of the framework.
The initial tool SAVE analyzes a static snapshot of a virtualized infrastructure and adopts the concept
of “colors” [Rus82] to perform a graph traversal with coloring. The policy is limited to information flow
policies and we annotate information sinks with allowed colors. A “color spill” is a violation of such a
policy when an information sink is colored with a non-allowed color. In Chapter 5 we study and build a
tool that leverages existing model checkers and theorem provers to analyze both static infrastructures
as well as dynamic aspects such as VM migration. The information flow analysis is based on graph
reachability and formalized using both state transitions as well as Horn clauses. We extend the scope of
the policies by using our VALID policy language (cf. Chapter 4). Building up on the study of dynamic
aspects in virtualized infrastructures, we differentiate between a reactive approach that analyzes changes
to the infrastructure after they have happened and a proactive approach that analyzes changes before they
are applied. The tool Cloud Radar follows a reactive approach where a model of a dynamic virtualized
infrastructure is maintained. Unlike the previous approaches of information flow analysis that are based
on graph traversal and coloring, this tool builds an information flow graph. In particular, a differential flow
graph that is partially re-computed for changes in the infrastructure model. Policies are expressed both
in native code (Scala) as well as in a graph matching language (GROOVE). Finally, Weatherman follows
a proactive approach where operations and their changes are analyzed before they are applied to the
infrastructure. Building up on the policies expressed in GROOVE as part of Cloud Radar, we use GROOVE
to express our operations transition model, the information flow analysis that builds up a information
flow graph, and extend the number of policies.

Summary of Approach Validation and Tool Evaluation
We performed the following validation of our approaches and evaluation of our tools. For SAVE (Chapter 3)
we analyzed the approach (Section 3.4) with regard to potential faults in the discovery and translation
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Table 9.1.: Overview of Approaches and Tools

Tool | Approach Information Flow Policy
SAVE (Chapter 3) | Static Graph traversal with colors Color Spill
Verif (Chapter 5) | Static & Dynamic Reachability analysis VALID
Cloud Radar (Chapter 7) | Dynamic Reactive Diff. Information Flow Graph  Scala & GROOVE
Weatherman (Chapter 8) | Dynamic Proactive  Information Flow Graph GROOVE

phases, their mitigation in our approach, and their impact on the detection rates. Further, we reduce
the correctness of the information flow approach to the correctness of the individual rules, and discuss
a practical set of rules as part of a case study for a virtualized infrastructure of a financial institution
(Section 3.6). The scope of our policy language VALID with regard to virtualized infrastructure security
goals is validated as part of a case study (Section 4.2.4). We demonstrate the language by expressing a
variety of policy goals (Section 4.5). For the validation of the automated verification (Chapter 5), we
conducted several small case studies for different kinds of policies (zone isolation, secure migration,
single point of failure). Based on a larger infrastructure example from a previous case study we evaluated
the performance. We analyze the algorithms of the dynamic information flow approach (Chapter 6)
with regard to termination and complexity, and compare the complexity with the approach of Chapter 3.
Based on a fault model adopted from the analysis of firewall rules, we analyze the correctness of our rule
ordering and application. As part of the evaluation of Cloud Radar (Chapter 7), we conducted performance
measurements for the individual phases of the tool and for differently sized virtualized infrastructures,
and compare the new approach to the full (non-differential) approach. Our security analysis covers
secure deployment of the system and obtaining change events securely. Further, we perform security
testing with known violating and non-violating operations to validate the detection of policy breaches.
Finally, for Weatherman (Chapter 8) we follow a similar evaluation as for Cloud Radar. We measure the
performance for the analysis of different operations, and we discuss the scalability of the system. Further,
the security analysis also covers the deployment of the system and the integrity of the analysis. The
security testing assessed the ability of the system to detect and block known violating operations, while
allowing non-violating operations.

9.1.2 Summary of Research Questions

In the following we discuss our research questions from Section 1.2 and how these have been addressed
in this dissertation.

Q1 How to model virtualized infrastructures with their configuration and topology? How to populate such a
model in an automated way? What is the scope of the model?

We model a virtualized infrastructure as a graph model that contains infrastructure elements, such as
VMs, hypervisors, storage, network, as graph nodes with attributes that capture their configuration, and
graph edges that represent the topology of the infrastructure. We populate such a model in an automated
way by extracting the configuration of different virtualization systems, such as Xen, VMware, KVM, and
PowerVM, and translating the different configuration formats into our unified graph model. In terms of
scope, we focus our modeling on the topology and configuration of the virtualized infrastructure, and
we treat VMs as “black boxes”. We do not discover nor model the configuration or state of the operating
system or applications that are running inside a VM.
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Q2 What is a suitable isolation and information flow model? How to determine isolation among tenants in
the infrastructure?

We propose a static information flow analysis based on the graph model representation of a virtualized
infrastructure and build an automated analysis framework. The approach takes explicitly specified trust
assumptions as well as security zoning of infrastructure elements, and performs a graph traversal to
determine potential information flows between elements of different zones. We propose the notion
of structural information control for a static infrastructure topology with respect to a set of trust and
information flow assumptions when there does not exists inter-zone information flow unless mediated by
a trusted guardian. The objective of our analysis is to reduce the complexity for a human administrator
to the specification a few of those trust assumptions and let the tool extrapolate those to the entire
infrastructure topology. From that and the zoning information, the tool diagnoses isolation breaches and
provides refinement for a root causes analysis.

Q3 How to express operational and security requirements? What requirements need to be expressed? What
kind of formal foundations are suitable that enable an automated analysis?

We propose a formal security assurance language for virtualized infrastructure topologies. For our
language, we study the areas deployment correctness, failure resilience, and isolation, and propose
exemplary definitions for security requirements in these areas. We consider in particular operations
requirements, for instance, provisioning and de-provisioning of machines or establishing dependencies,
as well as security requirements, such as sufficient redundancy or isolation of tenants. We embed
our assurance language in the tool-independent Intermediate Format (IF), which is well suited for
automated reasoning. The language’s formal foundations lie in a set-rewriting approach, commonly used
in automated analysis of security protocols, with an extension to graph analysis functions.

Q4 How to verify that the infrastructure — given as a model — fulfills the security requirements? What are
existing analysis tools? How suitable, expressive, and efficient are they?

We built an analysis system that applies general-purpose model-checking to verify if a virtualized in-
frastructure satisfies security requirements given in our formal policy language. In our approach we
consider both static and dynamic analysis cases, where in the static case the infrastructure is fixed and
matched against given policies, and in the dynamic case where an potential attacker could modify the
infrastructure. This allows us to analyze a virtualized infrastructure with regard to a variety of complex
security requirements. We employ a versatile portfolio of existing problem solvers, and evaluate different
analysis strategies based on Horn clauses and transition rules. We are able to analyze the infrastructure of
a financial institution in a case-study using our approach with optimizations.

Q5 How to cope with the infrastructure’s dynamic behavior? How can we keep the infrastructure model up to
date? Can we efficiently analyze changes happening in the infrastructure with regard to their security impact?

We design and implement an automated security monitoring and analysis system for dynamic virtualized
infrastructures. In our approach we monitor the infrastructure for changes and update a graph model
representation of the infrastructure by translating those changes into graph deltas. Furthermore, with
regard to isolation security goals, we establish a static information flow analysis for dynamic system
models based on dynamic information flow graphs. Compared to analysis systems that operate on
static snapshots of virtualized infrastructures, our change-based approach yields significant performance
improvements.
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Q6 Is it possible to prevent misconfigurations in the first place? How can we model configuration and topology
changes in a virtualized infrastructure? How can we analyze them?

We model the effect of management operations on the infrastructure using graph transformations. Each
operation is represented as a transformation rule that takes a graph, i.e., our graph model of the
virtualized infrastructure, as an input and produces a modified graph as an output. The output graph
can then be analyzed with regard to security policies that are expressed as graph matches. We built an
automated system that intercepts management operations from administrators before they reach the
central management host. The intercepted operations are translated into our operations model and then
applied to the current state of our graph model. In case the resulting graph does violate any security
policies, the operations are rejected. Otherwise, the operations are safe and forwarded to the management
host, where they will actually be deployed.

9.2 Discussion and Limitations

The scope of our approach is defined in Section 1.3. In summary, the key scope decisions are the following.

* We aim for a static analysis allows an analysis of virtualized infrastructures without requiring
infrastructure modifications. The benefits of a static analysis are that we can iterate over all possible
information flows and that we can perform what-if analyses to detect policy violations. However, the
analysis does not detect actual information flows in the infrastructure. A dynamic analysis would
detect the actual flows, but is also limited to the monitored flows and may miss other possible flows.

* Our framework is intended to be used as a verification, monitor, and prevention tool. It is not
intended to be used as a provisioning tool where a policy is used to provision a secure state nor
as a remediation tool that can resolve security violations after detection. However, our prevention
mechanism mitigates security violations that require remediation.

* Our analysis and modeling effort focuses on the low-level virtualized infrastructure topology
including compute, network, and storage resources. In particular we focus on layer2 networking
(including VLANSs). We are treating routers and firewalls as abstract guardians that mediates traffic
between two different security zones. We simplify the physical network topology as we observe
that the configuration and complexity of the physical network is moving in the virtual network
configuration.

* We treat VMs as “black boxes”, i.e., we do not perform any introspection or modeling of processes
within a VM. This allows us to perform a static analysis with all the discussed advantages in our
case, since we do not rely on live data through introspection.

* Our policies match against one state of the virtualized infrastructure topology and configuration.
This allows infrastructure providers to ensure the compliance of their current deployment as well as
the state of a future deployment through our operations model. This decision was based on typical
policies of providers and the initial limitation in our discovery to perform periodic full configuration
extractions.

* We assume that the software running on the configuration endpoints, for instance, the hypervisor
and central management, is correct and in particular provides us with a correct and complete
configuration view.

Furthermore, as a consequence of our decision to use existing general-purpose tools from the formal
methods community, such as OFMC, GROOVE, and SPASS, we observed limitations in terms of performance
and scalability of these tools. We already performed optimizations, such as graph simplification to reduce
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the initial state size or the usage of universal quantifiers to reduce the state space. We also outlined
further optimizations, for instance, the use of information flow nodes to reduce the number of information
flow edges produced by complex rules.

9.3 Future Work

Expanding the scope of our approach and building upon the results of this dissertation leads to the
following possible directions for future work.

Integration with Access Control: The integration of access control into our modeling and analysis is a
natural extension. Existing work by Koch et al. [KMPP02] already demonstrates the successful modeling
of RBAC as graphs and using graph transformations to manipulate a RBAC configuration. We can build
up and extend our operations model with access control information and annotate the operations with
their required privileges. Based on a set of users and their permissions, we can analyze using this
extended operations model if there exists a series of operations issued by a set of users that may result
into a security violation. The challenge remains to limit the search space by model checkers for the
analysis. In particular, due to the possible value domains for the arguments of operations.

Integration with Firewall Analyses: We treat firewalls and routers as trusted guardians that mediate the
information flows between two different security zones. Integration with the vast body of existing work
in the area of firewall analysis would provide us stronger insights into the trustworthiness of guardians.
Alternatively, we could explore the modeling of Layer3+ networking as part of our information flow
analysis.

Configuration Endpoint Attestation and Active Probes: We assume a correct configuration endpoint with-
out compromised or vulnerable software, which provides us with a complete and correct configuration
view. As future work, we can leverage existing technologies for remote attestation, such as Intel TXT or
SGX, to provide us a guarantee of the running software, i.e., to exclude that a malicious hypervisor
has been loaded. Furthermore, we can employ active probes that not rely on the central management
nodes, but which gather configuration data on their own and which are remotely attested too.

VM Introspection and Modeling: We are currently treating VMs as “black boxes” and do not extend our
modeling into the VMs. However, this could be a useful extension, for instance, to automatically
determine the zoning of a VM depending on the information and data stored or processed within a VM.
We could integrate our configuration extraction and modeling with CloudFlow [BFB*14] which uses
VM introspection to extract SELinux labels from within the VM. However, this would shift our approach
towards a dynamic analysis with VM introspection and possibly taint tracking.

Temporal Security Policies: Our policies govern the current state of a virtualized infrastructure including
the quantification on paths, e.g., for redundancy purposes. However, we do not cover policies that
span over multiple infrastructure states or temporal security policies. Our monitoring system that
records infrastructure changes over time enable the verification of temporal security goals. Existing
work on temporal logic to formalize security goals has been proposed [BKM10], where Chinese wall
and separation of duty policies among others have been formalized. Future work includes to study
the formalization of virtualization specific policies in temporal logic and their analysis based on our
monitoring system.

Root Cause Analysis and Remediation: Determining the root cause of a policy violation and offering
remediation steps are open problems that are not fully covered by our analysis framework. The
prevention mechanism in our framework will mitigate such problems. However, even if we just
monitor the operations without policy enforcement, they can be used to perform correlation of actions
and alarms to enable root cause analysis. We can build upon existing work in related areas, for
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instance, Pinpoint [CKF*02] performs root-cause analysis in large and dynamic IT services through
request tracing and Julisch [Jul03] proposes a clustering algorithm on alarms for root cause analysis in
intrusion detection systems.

Policy-based Provisioning: Given that our framework already captures the current state of a virtualized
infrastructure and the associated security policies, we can build a policy-based provisioning framework
on top. We can leverage the root cause analysis and remediation as discussed previously to transform
the current (violating) state of the infrastructure into a compliant one. Configuration synthesis
through model finding has already been demonstrated for network [NarO5b] and virtualization [KH14]
configurations.

Persistent Information Flow: Analog to extending our policies to span multiple infrastructure states,
the information flow analysis has to be extended to cover persistent information flows by tracking
infrastructure changes. For example, if a virtual disk is detached in one state and then attached
to another VM in another state. Our current information flow analysis would not detect this as
an isolation breach. As part of future work the information flow analysis has to incorporate taint
tracking that is persistent among infrastructure states. Taint tracking has already been used on mobile
devices [EGH"14] as well as in cloud environments (cf. Section 2.2). However, these are dynamic
analyses that taint the live data. As we are striving for a static analysis, the taint tracking would happen
in the infrastructure model, thereby not requiring any hypervisor or other infrastructure modifications.

Lazy Information Flow: Instead of computing and maintaining the entire information flow model, we
could study a lazy approach where information flow is computed on demand. For example, only
when a complex rule evaluation has a connectivity condition or a policy is evaluated that operates
on the connectivity. This is similar to the lazy intruder and lazy data types used in the OFMC model
checker [BMVO05a], which copes with infinite state spaces.

9.4 Conclusions and Commercial Impact

This dissertation demonstrated that it is in fact possible to model and analyze virtualized infrastructures
with regard to user-defined policies in an automated way. We build an automated security analysis
framework and evaluate it in case studies with the production infrastructure of a financial institution, with
a semi-production environment in a laboratory environment, as well as with simulated infrastructures.
The research in this dissertation lead to the creation of a new IBM product called IBM PowerSC Trusted
Surveyor [BCD"13], which provides inventory and analysis of network isolation in IBM PowerVM-based
virtualized infrastructures. Our contributions to the product line were honored by an IBM Research
Division award.
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