
Security Audits of Multi-tier Virtual Infrastructures in
Public Infrastructure Clouds

Sören Bleikertz
IBM Research - Zurich
sbl@zurich.ibm.com

Matthias Schunter
IBM Research - Zurich
mts@zurich.ibm.com

Christian W. Probst
Technical University of

Denmark
probst@imm.dtu.dk

Dimitrios Pendarakis
IBM T.J. Watson Research

Center
dimitris@us.ibm.com

Konrad Eriksson
InfraSight Labs
konrad.eriksson

@infrasightlabs.com

ABSTRACT
Cloud computing has gained remarkable popularity in the
recent years by a wide spectrum of consumers, ranging from
small start-ups to governments. However, its benefits in
terms of flexibility, scalability, and low upfront investments,
are shadowed by security challenges which inhibit its adop-
tion. Managed through a web-services interface, users can
configure highly flexible but complex cloud computing en-
vironments. Furthermore, users misconfiguring such cloud
services poses a severe security risk that can lead to security
incidents, e.g., erroneous exposure of services due to faulty
network security configurations.
In this article we present a novel approach in the security

assessment of the end-user configuration of multi-tier archi-
tectures deployed on infrastructure clouds such as Amazon
EC2. In order to perform this assessment for the currently de-
ployed configuration, we automated the process of extracting
the configuration using the Amazon API. In the assessment
we focused on the reachability and vulnerability of services
in the virtual infrastructure, and presented a way for the
visualization and automated analysis based on reachability
and attack graphs. We proposed a query and policy language
for the analysis which can be used to obtain insights into
the configuration and to specify desired and undesired con-
figurations. We have implemented the security assessment
in a prototype and evaluated it for practical scenarios. Our
approach effectively allows to remediate today’s security con-
cerns through validation of configurations of complex cloud
infrastructures.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCSW’10, October 8, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0089-6/10/10 ...$10.00.

General Terms
Security

Keywords
Amazon EC2, cloud computing, reachability, attack graphs

1. INTRODUCTION
Cloud computing aims at providing standardized resources

over a network that are perceived to provide unlimited scal-
ability while being paid per use with limited up-front cost.
These general principles of cloud computing can be imple-
mented on different abstraction levels. While Infrastructure
as a Service such as Amazon EC2 [3] provides virtual ma-
chines, storage, and networks, higher abstractions include
Platform as a Service as well as Software as a Service that
provide the actual web-based applications to end-users.
While the benefits are clear and end-users demand such

services, security is a major inhibitor of cloud computing
adoption on all levels of abstraction [16]. Today, public
clouds such as Amazon’s Elastic Compute Cloud (EC2) is
used to host multi-tier infrastructures. Such infrastructures,
e.g., comprise interconnected web, application, and database
servers that may then be synchronized with databases in the
enterprise. While this approach provides scalability, it may
expose private personal or critical company data to attacks.
In order to mitigate such risks, security concepts similar

to today’s well-known security zones have been introduced.
The so-called security groups of Amazon allow users to group
machines while restricting communication through firewall-
like rules. Nevertheless, the resulting configurations can be
complex and security error prone. An indication of this fact
is the complexity of correct firewall set-ups: When analyzing
firewall configurations for 12 common mistakes [34], more
than half of 37 cases exposed 9 of these 12 problems.
While security zones provide isolation and add robustness

to the overall set-up, there are multiple sources of potential
vulnerabilities in such a multi-tier cloud setting. In this
paper we focus on end-user booting vulnerable images or
creating erroneous and insecure configurations. Other risks
are cloud providers incorrectly configuring or implementing
their infrastructures as well as security incidents through
insiders or component failures.

1.1 Our Contributions
In this paper we demonstrate how to audit the correct

configuration of complex cloud infrastructures from an end-
user perspective. Our approach allows to validate the correct
set-up of security policies such as Amazon’s security groups.
This result allows to validate whether all servers in each tier
can only be reached from the desired originating systems
and, e.g., ensure that back-end database servers can indeed
only be reached from the corresponding application servers.
We then show how to further assess the security of such

an infrastructure. We automatically assess the vulnerabil-
ities of each VM in an infrastructure and, by using attack
graphs, compose these findings into an overall vulnerability
assessment of the given multi-tier infrastructure.
Both results together then allow us to correct potential

misconfigurations and to refine our multi-tier set-up to min-
imize the actual security risk as modeled by the range of
exploitable vulnerabilities. Overall, this guarantees secure
configuration as well as reduced vulnerabilities of our infras-
tructure deployed in the cloud.
Note that unlike earlier work (e.g., [23, 7]) we do not focus

on how to securely implement a cloud. Given the Ama-
zon cloud implementation we focus on how to securely use
such an infrastructure without misconfiguration or creating
additional vulnerabilities.

2. BACKGROUND

2.1 Scenario Illustrating an Multi-tier Infras-
tructure

Throughout this paper we will use the same scenario to
illustrate the different audit and analysis methods. We
consider an example configuration of a multi-tier web ap-
plication widely used in real-world deployments consisting
of web, application, and database servers. The web servers
are reachable on the two common web server ports 80 (http)
and 443 (https) over TCP from any source. The applica-
tion servers are only reachable on an application specific
port, e.g., 8080 TCP, from the web servers. Furthermore,
the database servers are only reachable from the applica-
tion servers on port 3306 (mysql) TCP. For maintenance
purposes, all servers allow ssh access (22 TCP) from the
corporate network, e.g., 1.2.3.4/24, and the servers accept
ICMP packets from any source.

2.2 An Overview on Amazon Elastic Compute
Cloud (EC2)

In this section we will explain relevant aspects of the Ama-
zon architecture necessary for understanding the remaining
parts of the paper.

Amazon’s Elastic Compute Cloud (EC2).
EC2 is Amazon’s service infrastructure cloud which allows

customers to deploy and run virtual machines on Amazon’s
infrastructure. Virtual machines, also called instances in
EC2, are provisioned from a machine template called AMI
(Amazon Machine Image). A machine image contains an
installation of an operating system and services required
by the customer. Typically, virtual machines are directly
connected to the Internet and protected by a firewall-like
concept called Security Groups.

Amazon Security Groups.
Security Groups represent a set of inbound firewall rules

associated with a name [4]. Outbound traffic is not restricted
by a security group and always allowed. A virtual machine
can be a member of one or multiple security groups, i.e., the
traffic for that particular VM is allowed based on the union
of rules specified in the associated security groups. Members
of the same security group can only communicate with each
other if explicitly allowed in the rules set.
The rules of a security group are applied in the manage-

ment layer of the host, i.e., the firewalling is done outside
the VM. Security groups can be used to simulate security
perimeters like a DMZ or internal servers when using secu-
rity groups as sources. The default firewall policy is Deny,
therefore all rules in a security group are Accept rules. Rules
can allow traffic based on protocol (TCP, UDP, ICMP), port
range, and source (IP range or another security group).

3. REACHABILITY AUDIT OF AMAZON
SECURITY GROUPS

In this section we will discuss the audit of security group
configurations with regard to reachability, i.e., analyzing the
information flow allowed by the configuration. Visualization
of the allowed information flow and a reachability query
language are presented which can support the administrator
in developing new configurations and in discovering potential
mistakes in the current configuration. A policy language and
automated analysis are shown for the periodic verification of
the configuration correctness.

3.1 Constructing a Reachability Graph
The current configuration of the security groups and re-

lated information, e.g., the security group membership of
VMs, are obtained from Amazon using their API.

The visualization and the later proposed automated anal-
ysis are based on a directed multi-graph constructed from
the configuration information obtained through the Amazon
API. The vertices of the graph represent the set of sources
and security groups defined in the configuration. The edges
denote the allowed information flow specified in the rules
of a security group between the sources and that particular
group. For example, security group web allows the Internet,
i.e., 0.0.0.0/0, to access on port 80 TCP. The graph would
consist of two vertices for the security group and Internet
source IP with an directed edge between them labeled 80/tcp.

3.2 Visualizing the Reachability Graph
Visualizing the reachability graph is useful for manual

inspection of the correctness of the current security group
configuration. According to [10], visualization takes advan-
tage of vision, the highest bandwidth input device, and of
the human perceptual abilities to make anomalies obvious
to the user.
Listing 1 shows the output of the ec2-describe-group

command, which displays the current security group configu-
ration and is part of the command-line management suite of
Amazon EC2. Even in such a simple example, it is difficult
to assess the correctness of the given configuration. Amazon
allows up to 100 defined security groups with multiple filter
rules per group, which would result in a highly complex
configuration that is even more difficult to evaluate.
In contrast Figure 1 illustrates the visualization of the

GROUP 1234 app a p p l i c a t i o n s e r v e r
PERMISSION 1234 app ALLOWS tcp 8080 8080 ←↩

FROM USER 1234 GRPNAME web

GROUP 1234 db database s e r v e r
PERMISSION 1234 db ALLOWS tcp 3306 3306 ←↩

FROM USER 1234 GRPNAME app

GROUP 1234 web web s e r v e r
PERMISSION 1234 web ALLOWS tcp 80 80 FROM ←↩

CIDR 0 . 0 . 0 . 0 / 0
PERMISSION 1234 web ALLOWS tcp 443 443 FROM ←↩

CIDR 0 . 0 . 0 . 0 / 0

GROUP 1234 d e f a u l t d e f a u l t group
PERMISSION 1234 d e f a u l t ALLOWS tcp 22 22 ←↩

FROM CIDR 1 . 2 . 3 . 4 / 2 4
PERMISSION 1234 d e f a u l t ALLOWS icmp −1 −1 ←↩

FROM CIDR 0 . 0 . 0 . 0 / 0

Listing 1: ec2-describe-group Command Output

reachability graph of the same configuration. In our opin-
ion, the visualization can be more intuitively understood
and judged for correctness. The multi-tier structure of the
security groups is immediately obvious to the auditor and
the external sources, i.e., IP ranges, are clearly pointed out.

0.0.0.0/0

web

app

db

1.2.3.4/24

default

80/tcp 443/tcp

8080/tcp

3306/tcp

22/tcp
-1/icmp

Figure 1: Visualization of Security Groups Reacha-
bility

Potential misconfigurations can easily be spotted in the
visualization. For example, if the database security group
would allow any source to access the database, rather than
just the application group, it can easily be detected during
the inspection due to an edge between the vertices 0.0.0.0/0
and db.

3.3 Understanding and Specifying Reachabil-
ity

The visualization of the security group reachability is only
useful for a manual inspection of the correctness of an initial
security groups configuration. Afterwards, a periodic verifi-
cation of the configuration against a policy specification is
desired, in order to retain the correctness of the configuration,
because changes in the configuration over its lifetime might
cause violations with regard to its original intentions. Fur-
thermore, queries can be used to answer questions about the
reachability of the current configuration, e.g., for resolving
reachability problems.

A Language for Reachability Queries.
Reachability queries can be specified in the following form:

from s to d port p proto p′. s is either an IP address
(specified as a single address or IP range), a security group,
or any for matching all sources. d is either a security group
or any. p can be one specific port or a port range p1 − p2.
Both are transformed to a tuple (p1, p2), where in the former
case p1 = p2. Valid values for p′ are tcp, udp, icmp. p and p′
can be set to any in case one is not interested in the specific
port or protocol.

A Policy Language for Expressing the Expected Reach-
ability.
For the policy language we will consider two cases. A

never policy specifies a reachability which should never be
established between a source and destination. An only policy
allows only a specific reachability, i.e., the given information
flow is allowed but any other flow is considered a violation
of the policy. never policies are specified similarly to queries:
never from s to d port p proto p′.
For an only policy we have to extend this syntax slightly to

allow the specification of multiple port and protocol pairs per
source and destination: only from s to d port p1 proto
p′1 and . . . and port pn proto p′n. Consider as an exam-
ple a web server group which should only be reachable to
port 80/tcp and port 443/tcp: only from 0.0.0.0/0 to
web port 80 proto tcp and port 443 proto tcp.

3.4 Auditing a Configuration against a given
Reachability Policy

The processing and verification of the reachability queries
and policies is realized using two algorithms which are ex-
plained in the following.

Reachability Analysis.
The algorithm to process the reachability queries is given in

Algorithm 1. We consider a sample input query: from s to
d port p1 − p2 proto p′, where the values (s, d, (p1, p2), p′)
are passed as input parameters to the algorithm. The algo-
rithm returns True if the reachability specified in the query
is established for a given reachability graph GR = (V,E).

Algorithm 1: Process a Reachability Query
Input: Reachability Graph GR, Query (s, d, (p1, p2), p′)
Output: True or False if query matches GR
E′ ← ∅
foreach e ∈ E do

if (s = any or s ⊆ e.source) and (d = any or
d = e.destination) then
E′ ← E′ ∪ {e}

foreach e ∈ E′ do
c← e.constraint
if (p′ = any or p′ = c.proto) and (p1 = any or
(c.p1 ≤ p1 and p2 ≤ c.p2)) then

return True
return False

In the first step, we construct a set of edges E′ containing
all edges between the given source and destination vertices.
Since a source can be specified as an IP range, we have to
check if the given source s is a subset of the source of the

edge, e.g., 10.0.0.0/24 ⊂ 0.0.0.0/0. In case the source of the
edge and s are security groups, ⊆ acts as an ordinary equality
operator. Otherwise, when either the source or destination
is specified as any, we will include the edge regardless of the
source or destination respectively.
In the second step, we compare the constraints of the

edges in E′ (indicated by e.constraint) with the constraints
specified in the query. any for the ports and protocol short
circuits the check, i.e., the query is only interested in an edge
between s and d. In the other case, the protocols must be
equal and the port range in the query enclosed in the port
range of the edge constraint.

Policy Verification.
The process of the verification of reachability policies lever-

ages the previously described query processing algorithm. For
never policies in the form never from s to d port p1− p2
proto p′, we simply convert them to a query (s, d, (p1, p2), p′)
which has to evaluate to False. Otherwise the given policy
is not satisfied.
In case of an only policy like only from s to d port
p1,1 − p1,2 proto p′1 and . . . and port pn,1 − pn,2 proto
p′n, we have to do a two step process for the verification. We
convert the policy into n queries of the form (s, d, (pi,1, pi,2),
p′i) which all have to evaluate to True. Otherwise the reach-
ability specified in the policy is not satisfied. Furthermore,
we have to verify that other information flows are not possi-
ble in the reachability graph for the particular source and
destination, i.e., queries of the complement (s, d, p̄, p̄′) have
to evaluate to False. This exclusiveness of the reachability
specified in the only policy is checked with Algorithm 2.

Algorithm 2: Verify Exclusiveness of an only Policy
Input: Reachability Graph GR, Policy

(s, d, [((p1,1, p1,2), p′1), . . . , ((pn,1, pn,2), p′n)])
Output: True or False if the policy is satisfied
[Construction of E′ equal to Algorithm 1]
foreach e ∈ E′ do
B ← [True, True, . . .]
c← e.constraint
for i = 1 to n do

if (p′i 6= any and p′i 6= c.proto) or (pi,1 6= any
and (c.p1 < pi,1 or pi,2 < c.p2)) then
Bi ← False

if True /∈ B then
return False

return True

The construction of the set of relevant edges E′ is equal
to the part in Algorithm 1. For each edge in this set, we
initialize an array B, with a size equal to the number of
port-protocol pairs specified in the policy, with True values.
For each such pair, we check the edge constraint if it allows
further information flow than already allowed by the pair.
For example the policy requires only port (p1, p2) but the
edge constraint allows (p1−1, p2 +1), therefore allows further
information flow with two more ports and thereby violates
the only policy.
If the policy specifies any for the port or protocol then we

can skip the constraint check. Otherwise, if the protocols of
the policy and edge constraint are different, or the port range

of the edge constraint is larger than the one specified in the
policy, we mark a violation in the array B by setting the
array slot corresponding to the port-protocol pair to False.
After checking all pairs for a particular edge constraint, we
test if B does not contain any True value. If this is the case,
then the policy is violated, because none port-protocol pair
matched the edge constraint. In case of a non-violation, at
least one pair would have matched and resulted in a True
value in B.

The periodic verification uses a policy specification consist-
ing of a set of policies, which all have to evaluate to True, in
order that the verification is successful and the configuration
does not contain any violations.

4. ASSESSING THE VULNERABILITY OF
AN AMAZON EC2 CONFIGURATION

While the technique presented in the previous section
targeted the connectivity through single edges, we now extend
this approach to inspect the overall attack vulnerability of the
whole graph. Since pure reachability is a rather weak security
measure, we extend the edges with a weight of how likely
it is that they will be vulnerable to an attack. This results
in a kind of attack graph [31, 32, 33]. The audit of security
configurations using these attack graphs is concerned about
the impact of security group rules with regard to services
security, and is based on the previously presented reachability
analysis.

4.1 Attack Graph representing the Vulnera-
bility of EC2 Configurations

An attack graph for security groups consists of vertices
based on IP ranges and AMIs (Amazon Machine Images),
where the information flow between the vertices is given by
the rules of the security groups the VMs — provisioned from
the AMIs — are members of. Furthermore, the edges are
labeled with a severity rating for the service running in the
AMI and allowed by a security group rule.
For example, assume that VM 1 is a member of security

group web and provisioned from AMI 1. There exists a rule in
web that allows 0.0.0.0/0 to access on port 443/tcp. Suppose
the web server running in AMI 1 has a known vulnerability,
then there would be an edge between 0.0.0.0/0 and AMI 1
in the attack graph with a label 443/tcp medium.

4.2 Constructing an Attack Graph through
Discovery and Vulnerability Scanning

The previously described attack graph can be automati-
cally constructed in three steps.
The first step is to establish the relationship between AMIs

and security groups. Using the Amazon API, we can obtain
the currently running VMs, including information on the
AMIs used for provisioning them and the security groups
they are members of. Typically, the number of different
AMIs per security group should be rather small, because the
role of the security group is reflected by a specific AMI, e.g.,
multiple instances of a web server AMI would be member
of the web security group. In our example we assume the
existence of four different AMIs; AMI 1 is a member of
security group web, AMI 2 of app, AMI 3 and AMI 4 of
db. Furthermore, all AMIs are member of default. Figure 2
illustrates the relationships between security groups and
AMIs for our scenario.

0.0.0.0/0

web AMI 1

app AMI 2

db AMI 3

AMI 4

default

1.2.3.4/24

80/tcp 443/tcp

8080/tcp

3306/tcp

22/tcp
-1/icmp

Figure 2: Relationship between Security Groups
and AMIs

The second step in the construction is to obtain a severity
rating for the services running in the AMIs. Using Amazon
EC2 we can start each AMI in a separate VM for analy-
sis purposes, thereby not affecting the production systems.
The AMI’s security from an external point of view can be
determined in the VM using vulnerability scanners like Nes-
sus [30]. Further information such as patch levels and version
numbers can be obtained from an internal point of view by
logging into the AMI instance. For each port of an AMI we
thus obtain a severity rating from a domain of vulnerability
ratings. Here we use the range of Low, Medium, or High.
For typical applications this level of granularity seems to be
sufficient, but a more fine-grained rating can be achieved
using Common Vulnerability Scoring System (CVSS) [17].
The final step in the construction is to combine the pre-

viously obtained information with the reachability graph
of security groups. A security group is replaced by all the
AMIs related to that particular group, and the edges between
the sources and the AMIs are additionally labeled with the
severity rating for the port and protocol associated with each
edge. Figure 3 illustrates the attack graph for the example
scenario where thicker edges represent higher vulnerability
ratings.
In the current configuration, an attacker in the corporate

network could compromise a VM of the application server
group, which are provisioned using AMI 2, through a vulner-
ability in the ssh service. Afterwards, further attacks can be
launched against the medium rated mysql service running on
instances of AMI 4, potentially compromising the database.

4.3 Understanding and Specifying acceptable
Risk

When analyzing attack graphs constructed from cloud
configurations, one is particularly interested in the weakest
path from one vertex to another. The weakest path is the
shortest path with the highest vulnerability rating, i.e., the
most likely path an attacker would take to compromise a spe-
cific resource, because less vulnerabilities with high severity
ratings are more likely to be exploited successfully.

AMI 10.0.0.0/0 0.0.0.0/0

AMI 2 AMI 3AMI 4

1.2.3.4/24 0.0.0.0/0

80/tcp
low

443/tcp
medium

8080/tcp
medium

3306/tcp
low

3306/tcp
medium

22/tcp
low

22
/tc
p

hig
h

22/
tcp

low

22/tcp
low

-1/icmp
low

-1/icmplow
-1/icmp
low

-1/icmplow

Figure 3: Attack Graph of the Multi-Tier Applica-
tion

Query Language to Understand Vulnerabilities.
Reachability queries are specified in the following form:

from s to d vuln v. We drop protocols and ports in the
query, since we are mostly interested in the vulnerability,
not how an attack is performed. s is either an IP address
(specified as a single address or IP range), an AMI, or any
for matching all sources, and d is either an AMI or any. The
vulnerability value v can be any value from the domain of
vulnerability ratings, or the special value any. The result of
such a query is a set of shortest paths P from s to d. If any is
specified for v, then all paths are considered, otherwise only
paths with a minimum vulnerability higher than or equal to
v are considered.

Policy Language for Specifying Acceptable Vulnerabil-
ities.
For the policy language we consider the same cases as

in Subsection 3.3. As before, a never policy specifies an
unwanted connection between a source and a destination.
They are specified similarly to queries: never from s to d
vuln v, where s, d, and v can have the same values as for
queries. The interpretation of a never policy is that there
may never be a connection with a vulnerability rating higher
than or equal to v.
Unlike before, only policies are very similar to never poli-

cies when dealing with attack graphs. This is because we
only want to restrict the vulnerability ratings allowed on
connections between nodes. These policies have the form
only from s to d vuln v, that is the only difference is the
initial keyword. Again, s, d, and v can have the same values
as for queries. The interpretation of an only policy is that
there may only be connections with vulnerability ratings
lower than or equal to v.

4.4 Vulnerability Audit using Weakest Path
Algorithm

The analysis of queries on the attack graph, and the testing
of attack graphs against policies, is performed by means of
Dijkstra’s shortest path algorithm on a weighted graph. The
weight of the edges is based on the vulnerability rating where
the weight relation is the following: High < Medium < Low.
Since Dijkstra’s algorithm will determine the shortest path

with the lowest weight, we will obtain the path of least
resistance an attacker might take. In case the query or
policy contains a vulnerability parameter unequal to any,
annotated by any, we have to transform the attack graph
before performing the Dijkstra’s algorithm by removing all
edges with a vulnerability rating lower than the one specified.
Based on the different combinations of query/policy source

and destination parameters, that is, (any, any), (any, any),
(any, any), and (any, any), we have to perform a different
variation of the Dijkstra’s algorithm. For the case (any, any),
i.e., a specific source and destination, the Dijkstra’s algorithm
can be terminated upon finding the shortest path for the
destination. In the other case where the destination is any,
the regular algorithm will be performed which determines the
shortest path between a single source and all other vertices.
For (any, any), i.e., the source is any, we reverse the attack
graph and start the single source Dijkstra’s algorithm from
the destination. Due to the reversal of the attack graph, we
also have to reverse the paths obtained by the Dijkstra’s
algorithm. In case of (any, any), all-pairs shortest paths is
determined using Dijkstra’s algorithm starting from every
vertex. Alternatively, the Floyd-Warshall algorithm could
be used to determine the all-pairs shortest paths.
The policy processing can be based on the approach of

finding the weakest path. A never policy basically states the
fact that no weakest path with the properties specified in
the policy should exist. In case of only policies, they state
that never should exist a path with a vulnerability higher
than the one specified. For example, the policy specifies a
medium vulnerability, then no path with a high vulnerability
should exist.

4.5 Reducing Vulnerabilities Through Trans-
formation

The purpose of the transformation process is to reduce
the complexity of the configuration by removing unneces-
sary rules and extracting common ones, and to improve the
security by splitting existing security groups.

Splitting of Groups.
Based on the attack graph and a specification of the de-

sired services dependency, we can propose a new security
group configuration by splitting existing security groups. The
splitting process has to balance between increasing config-
uration complexity and security. One extreme case would
be to place each AMI in a separate security group, therefore
minimizing the affect of a vulnerability in one AMI to other
AMIs. Generally, high or medium rated AMIs are isolated in
separate groups, while AMIs with a low or no severity rating
can remain in the same group.

Closing Unnecessary Open Ports.
Using the AMI analysis of open ports and the rules of

the corresponding security group the instances of that AMI
are a member of, we can identify unnecessary rules in the
configuration if ports are opened in the configuration, but
no service is listening on that particular port in the AMI
instances. The difference of the set of ports opened by
the security group and the set of ports used by the AMIs
represents the ports which are unnecessarily opened. These
ports can be automatically removed from the security group
rules set during a transformation phase.

Extracting Common Ports.
A VM can be a member of several security groups and

we can leverage this fact to reduce the complexity of the
configuration by identifying common ports in the rules of the
existing groups and extract them into a separate group. For
example, if all groups would allow ssh access from a corporate
network and allow ICMP packets, we could automatically
extract these rules into a separate group. All instances would
be additionally a member of that group. The principle is
similar to Refactoring found in software engineering, where
common functionality is extracted.

5. IMPLEMENTATION & EVALUATION
In this section we will shortly present our implementation

of the security assessment. We will provide time measure-
ments and a practical evaluation of the tool.

5.1 Prototype Implementation
We implemented the previously described construction of

reachability and attack graphs, as well as the processing
of queries and policies for such graphs in Python. The
implementation, called SAVEly, was straight forward given
the detailed algorithms presented earlier. We are using the
boto [6] library for obtaining the configuration from Amazon
EC2, and the NetworkX [18] library for the graph handling
and shortest-path algorithms.
The attack graph construction is using the OpenVAS vul-

nerability scanner [20]. For each discovered AMI we spawn
a new instance in a specialized savely_scan security group
which allows all traffic from the scanner machine’s IP ad-
dress, instead of scanning the production servers directly.
This approach of scanning will not affect the production
servers due to aggressive scanning probes.

5.2 Performance Measurements
We will give time measurements for the analysis on sam-

ple deployments on Amazon using the SAVEly tool. The
accuracy of the time measurements is not very important,
because we mainly want to convey a general overview of the
time consumptions rather than using the measurements for
performance improvements and profiling. The measurements
were obtained on a regular laptop machine with a 2.13GHz
Pentium M processor, 2 GB of RAM, and running Gentoo
Linux.

Reachability Graph Analysis.
The deployed configuration results in a reachability graph

with 257 vertices (resulting from the security groups) and
505 edges (based on the security groups rules). We obtained
the following measurements for the individual parts of the
analysis:

• Obtain SGs from Amazon: 1.7s
• Build reachability graph: 0.04s
• Perform reachability queries (7): 0.025s
• Perform policy check (2 never, 1 only): 0.01s

Clearly obtaining the configuration from Amazon is the
slowest part in the process, because a cryptographically
signed transaction over the Internet to Amazon’s API server
has to be performed.

Attack Graph Analysis.
For the construction of the attack graph we use the Open-

VAS [20] vulnerability scanner with 585 plugins enabled.
Furthermore, we have to obtain the security groups and
running instances from Amazon. We obtain the following
measurements with one running instance found and scanned:

• Get Security Groups: 1.6s
• Get Instances: 0.15s
• Build Attack Graph: 2min52s

The construction of the attack graph is by far the most time
consuming part in the analysis process, because it involves
starting a new instance at Amazon EC2 and performing
a vulnerability scan, where the vulnerability scan is the
dominating factor.
Since the constructed attack graph is rather simple, be-

cause it only involves one AMI, we are performing the analysis
on an attack graph similar to the one presented in Figure 3.
However, the ICMP edges were removed. We obtain the fol-
lowing time measurements for performing queries and policy
checks on the attack graph:

• Queries (5): 0.01s
• Policies (1 never, 1 only): 0.0015s

Evidently for such simple attack graphs the query and policy
checks can be performed in an instant.
The most time consuming part in the attack graph analysis

is the vulnerability scan. A possible improvement for this
step could be to parallelize it, i.e., start all instances at
the same time and perform the vulnerability scan from an
equal number of scanning instances. However the scanning
instances can not be run on Amazon EC2, because their
policy prohibits the port scan of other instances.

5.3 Effectiveness of Attack-graph-based Secu-
rity Audits

We limit the evaluation of the tool’s functionality to attack
graphs due to space constraints. The attack graph analysis
is more interesting from a security perspective than the
reachability one. We consider the more complex attack
graph shown in Figure 3 to demonstrate the analysis. In the
first part we demonstrate the query language which supports
an administrator to get an insight into the vulnerability of
services in the current configuration. The second part deals
with the policy language for specifying undesired properties
of the configuration in terms of service vulnerabilities and
attack paths.
A sample query file for the attack graph analysis is given in

Listing 2. The queries test the service vulnerability exposed
to the Internet and the corporate network, and the general
vulnerability within the whole deployment.

from 0 . 0 . 0 . 0 / 0 to any vuln medium
from 0 . 0 . 0 . 0 / 0 to any vuln high
from 1 . 2 . 3 . 4 / 2 4 to any vuln medium
from any to any vuln high
from any to AMI2 vuln medium

Listing 2: Attack Query File

The output of the query analysis is given in Listing 3. For
each query the tool also provides the most likely attack paths

which fulfill the query. For example the first query, which
tests which resources could be compromised by any attackers
exploiting medium rated vulnerabilities, provides us with
three potential paths resulting in the compromise of AMI1,
AMI2, and AMI4.

from 0 . 0 . 0 . 0 / 0 to any vuln medium
=> [[’ 0 . 0 . 0 . 0 / 0 ’ , ’AMI1 ’ , ’AMI2 ’ , ’AMI4 ’] , ←↩

[’ 0 . 0 . 0 . 0 / 0 ’ , ’AMI1 ’] , [’ 0 . 0 . 0 . 0 / 0 ’ , ’AMI1 ’ ,←↩
’AMI2 ’]]

True
from 0 . 0 . 0 . 0 / 0 to any vuln high
=> []
Fa l se
from 1 . 2 . 3 . 4 / 2 4 to any vuln medium
=> [[’ 1 . 2 . 3 . 4 / 2 4 ’ , ’AMI2 ’ , ’AMI4 ’] , ←↩

[’ 1 . 2 . 3 . 4 / 2 4 ’ , ’AMI2 ’] , [’ 0 . 0 . 0 . 0 / 0 ’ , ’AMI1←↩
’ , ’AMI2 ’ , ’AMI4 ’] , [’ 0 . 0 . 0 . 0 / 0 ’ , ’AMI1 ’] , ←↩
[’ 0 . 0 . 0 . 0 / 0 ’ , ’AMI1 ’ , ’AMI2 ’]]

True
from any to any vuln high
=> [[’ 1 . 2 . 3 . 4 / 2 4 ’ , ’AMI2 ’]]
True
from any to AMI2 vuln medium
=> [[’ 1 . 2 . 3 . 4 / 2 4 ’ , ’AMI2 ’] , [’ 0 . 0 . 0 . 0 / 0 ’ , ’AMI1←↩

’ , ’AMI2 ’] , [’ AMI1 ’ , ’AMI2 ’]]
True

Listing 3: Attack Query Output

Now we demonstrate the ability of the tool to verify poli-
cies, i.e., to check for undesired behavior. A simple policy
file is shown in Listing 4 which implements the idea that an
administrator wants to be sure that no high rated vulnera-
bilities exists in the deployed multi-tier application and that
at maximum low rated vulnerabilities are exposed to any
attacker.

never from any to any vuln high
only from 0 . 0 . 0 . 0 / 0 to any vuln low

Listing 4: Attack Policy File

The output of the policy analysis is given in Listing 5.
Reconsidering the query output previously shown, it is not
surprising that both policies are violated by the current con-
figuration. The second last query returned a potential attack
paths using a high rated vulnerability between 1.2.3.4/24
and AMI2, which can be manually verified using the illustra-
tion of the attack graph in Figure 3. The second policy is
violated because several attack paths for any attacker exist
using medium rated vulnerabilities as shown using the first
query.

Attack P o l i c y v a l i d :
p o l i c y (’ any ’ , ’ any ’ , ’ high ’) v i o l a t i o n : ←↩

[[’ 1 . 2 . 3 . 4 / 2 4 ’ , ’AMI2 ’]]
p o l i c y (’ 0 . 0 . 0 . 0 / 0 ’ , ’ any ’ , ’medium ’) v i o l a t i o n←↩

: [[’ 0 . 0 . 0 . 0 / 0 ’ , ’AMI1 ’ , ’AMI2 ’ , ’AMI4 ’] , ←↩
[’ 0 . 0 . 0 . 0 / 0 ’ , ’AMI1 ’] , [’ 0 . 0 . 0 . 0 / 0 ’ , ’AMI1←↩
’ , ’AMI2 ’]]

Fa l se

Listing 5: Attack Policy Output

The policy violation detection with given counter-examples
will be very useful for an administrator to fix discovered
vulnerabilities in the deployed complex multi-tier application.

6. RELATED WORK

6.1 Virtual Machine and Cloud Security

Information Leakage.
The multi-tenancy of virtualization and in particular cloud

computing in form of infrastructure as a service, faces the
scenario that an attacker will share the same physical re-
sources as other tenants. This sharing of resources could
lead to information leakage due to known or unknown covert
channels.
A very interesting approach was presented in [23] which

consists of a method for predicting the placements of VMs
in the Amazon cloud and discussing potential side-channels
and their implications. The placement is in particular inter-
esting for attackers who target a specific victim and want to
place a VM on the same physical server. Placing a VM on
the same physical server, i.e., establishing co-residency, will
allow further attacks using side-channel vulnerabilities to
extract potentially sensitive information about the other VM.
Work on side-channel vulnerabilities leading to the exposure
of cryptographic keys were presented in [21] (Intel Hyper-
Threading), [2] (CPU branch prediction), and [1] (I-Cache
exploiting).
Another problem which could lead to information leakage

is a result of the rollback functionality of VMs. Due to the
rollback, cryptographic protocols could be affected either
due to reuse of keys or reusing the same random numbers
generated in an earlier run of the protocol. In [24] the
issue of randomness problems in cryptographic protocols
is discussed and it is shown how such a problem can be
exploited in the case of TLS. In order to mitigate the problem
related to randomness in virtual machines, they propose
a framework for securing existing protocols by the means
of hedged cryptography, which means that cryptographic
protocols will provide a weaker security notion in the presence
of a bad randomness source [5].

Remote Attestation.
Remote attestation tackles the problem of assuring that

a remote platform consists of a trusted set of hardware and
software resources. This is typically done in open distributed
systems to ensure that the other peers are not running mali-
cious software [15].
The Terra [9] architecture is based on a trusted VMM

(TVMM) which provides two different execution contexts for
VMs: open box and closed box. The first one is equivalent
to a regular general-purpose hardware platform and the
second one resembles a special-purpose platform which is
typically found in closed systems like mobile phones and
game consoles. The closed box environment provides, among
other capabilities, remote attestation for assuring remote
parties about the integrity of the hardware and software
stack of a VM.
The usage of attestation in the area of cloud computing,

i.e., trusted cloud computing was presented in [13] and [25].
The problem is that for cloud consumers the IaaS providers
operate a black box and the consumer does not have any
insights about the underlying security of the architecture.
The architectures presented in the two papers use attestation
to assure that a known and trusted software stack is in use
and provides adequate security for the VMs. For example,
[25] makes use of a trusted VMM as presented earlier.

An example for the usage of attestation in a real-world
application is Enomaly’s Elastic Computing Platform, which
is a virtualized systems management software, in the High
Assurance Edition [8].

6.2 Attack Graphs
Attack graphs are a way to model network risks in a

network using a graph-based approach, where nodes represent
a possible attack state, e.g., user privilege escalation, and
the edges represent a way of changing states, e.g., using an
exploit with certain pre- and post-conditions [29, 22]. An
elaborate review of literature on attack graphs from the year
2005 can be found in [14].
Attack graphs can be constructed by security experts,

however this manual approach becomes very difficult due
to the scalability of the problem. Therefore, an automated
approach for the construction and analysis of attack graphs
is desired. In [28] an early tool for the construction and
analysis of attack graphs was presented. It uses manually
obtained information about attacker and exploit capabilities,
and automatically gathered information about the machine
configurations and vulnerabilities, in order to construct an
attack graph. A shortest-path for the graph is computed
which represents the most likely path an attack will take.
A similar analysis using shortest-path was also discussed in
[29, 22]. An approach based on symbolic model checking
for automatic and efficient graph construction was presented
in [26]. The authors of [27] demonstrate a toolkit for the
analysis and construction of attack graphs.
Visualization of reachability, attack graphs, and attack

paths is very important for administrators in order to effec-
tively leverage these tools and apply the obtained results for
improving the security of the network. Sample work in the
visualization of attack graphs can be found in [33, 32].

6.3 Topological Vulnerability Analysis
One of the most comprehensive approaches in attack graph

construction and analysis is Topological Vulnerability Analy-
sis (TVA) presented in multiple publications [11, 12]. The
main idea is to analyze dependencies of attack exploits, in
order to find paths of an attacker to compromise specific tar-
gets in the network. Information from vulnerability scanners,
which provide detailed information of isolated vulnerabilities,
are gathered and combined. Based on the attack graphs
they can propose changes in the configuration to increase
the network security, and an interactive graph visualization
tool can help administrators in finding network problems.
Only relying on a vulnerability scanner can limit the in-

sights gained into the possible vulnerable services of a host.
For example, client-side vulnerabilities are not covered by vul-
nerability scanners. Therefore, a new approach was presented
in [19], which correlates information of a asset management
database with a vulnerability database. For instance, a host
is running a specific version of a web browser, which is noted
in the asset database, and the vulnerability database con-
tains information about that particular version of the web
browser.

Several limitations of TVA were pointed out in [14]:
• Exploit information, i.e., pre- and post-conditions, en-
tered by hand
• Firewall and router rules not automatically imported
• Poor scaling to large networks
• Requires low-level attack details

Furthermore, a general problem of using vulnerability scan-
ners on production systems is that the probes of the scanner
can cause problems and damages on the systems, e.g., due
to aggressive behavior of the probes.

7. OPEN QUESTIONS

Reducing Vulnerabilities.
Besides splitting security groups, it would also be inter-

esting to split AMIs. In case an AMI contains multiple
services with different severity ratings, the high severity ser-
vices should be isolated from the other ones. This splitting
of an AMI is more difficult to automate, since we have to un-
derstand the configuration of the service we want to isolate,
in order to move it to a separate AMI. The open question
is how to safely extract services from an operating system
image without breaking the functionality of the service and
potential dependencies of services hosted on the same image.

Security Audits for Private Clouds.
Our approach validates the configuration of Amazon’s EC2.

To actually guarantee security, it assumes that a specified
configuration is correctly implemented by Amazon. A result-
ing question is how the analysis techniques presented for the
Amazon cloud can be transferred to private clouds where
information about the configuration are harder to extract.
For example, can we use the concept of security groups also
in the private cloud scenario, i.e., a set of VMs hosted on
a physical server which is protected by a firewall can be in
a “security group” depending on the firewall configuration.
Understanding the relationship between the firewall rules
and VMs is crucial for extracting security groups from a
private cloud.
Furthermore, spawning instances of production VMs for

security analysis purposes, in order that the original VM is
not affected by the analysis, can be more difficult in private
cloud environments where the management infrastructure
could be less automated, not ready for programmatic use,
and more heterogeneous.

AMI Security & Multi-tenancy.
Besides analyzing the AMIs regarding vulnerable services,

we could also perform an analysis to check for cloud security
best practices. For example to check that images do not
contain hard-coded host keys, e.g., for ssh. Two instances of
an AMI should respond with different host keys.
Furthermore, multi-tenancy and side-channel attacks are

problematic in cloud computing environments. We could
introduce a policy and validation method for allowing or
disallowing co-residency on physical machines for VMs or
security groups in general. For example members of a high-
priority security group should not be located on the physical
host as members of a low-priority one.

8. CONCLUSIONS AND OUTLOOK
In this article we presented a novel approach of assessing

the security of multi-tier applications deployed in infrastruc-
ture clouds using Amazon EC2 as an example case. The
security assessment consists of an analysis step of the system
with regard to two properties: reachability and services vul-
nerabilities. For both cases, a query language and processor
allow administrators to get an insight into the reachability
and vulnerability of the services, e.g., in order to detect
misconfigurations which expose the wrong services or to find
vulnerable services. Furthermore, a policy language allows
the specification of the desired state of the system which can
be periodically verified.
We implemented the security assessment in Python and

evaluated it against a sample multi-tier application on Ama-
zon EC2. Violations in the vulnerability policies were suc-
cessfully detected, and possible attack paths were presented
to the administrator in order to enable him to secure the
involved services.
Finally, we discussed open questions and provided an out-

look of future research directions. For example, we pointed
out that it would be interesting to extend the process of
splitting security groups to AMIs in order to reduce vul-
nerability risks. Furthermore, we discussed to extend the
security assessment to cover public infrastructure clouds, and
to handle multi-tenancy and AMI security issues in public
cloud environments.
In conclusion, we can say that our security assessment will

be a valuable tool for administrators of multi-tier applica-
tions deployed in infrastructure clouds like Amazon EC2.
Troubleshooting using the query languages can be done and
the policy language allows a specification of the desired state,
in order that the deployment remains secure. Our practical
evaluation demonstrates the feasibility of this approach.

Acknowledgment
This project was partially supported by the MASTER re-
search project funded by the European Commission’s FP7
programme.

9. REFERENCES
[1] Aciiçmez, O. Yet another microarchitectural attack:

exploiting i-cache. In CSAW ’07: Proceedings of the
2007 ACM workshop on Computer security architecture
(New York, NY, USA, 2007), ACM, pp. 11–18.

[2] Aciiçmez, O., Koç, c. K., and Seifert, J.-P. On
the power of simple branch prediction analysis. In
ASIACCS ’07: Proceedings of the 2nd ACM symposium
on Information, computer and communications security
(New York, NY, USA, 2007), ACM, pp. 312–320.

[3] Amazon. The Amazon Elastic Compute Cloud (EC2).
Available at http://aws.amazon.com/ec2/, last
accessed March 2010, 2010.

[4] Amazon Web Services. Amazon Web Services:
Overview of Security Processes, November 2009.

[5] Bellare, M., Brakerski, Z., Naor, M.,
Ristenpart, T., Segev, G., Shacham, H., and
Yilek, S. Hedged public-key encryption: How to
protect against bad randomness. In ASIACRYPT
(2009), pp. 232–249.

[6] boto. boto - Python interface to Amazon Web Services.
Available at http://code.google.com/p/boto/, last
accessed June 2010, 2010.

[7] Christodorescu, M., Sailer, R., Schales, D. L.,
Sgandurra, D., and Zamboni, D. Cloud Security Is
Not (Just) Virtualization Security. In CCSW ’09:
Proceedings of the 2009 ACM workshop on Cloud
computing security (New York, NY, USA, 2009), ACM,
pp. 97–102.

[8] Cohen, R. Announcing Enomaly ECP High Assurance
Edition for Trusted Cloud Computing. Available at
http://www.elasticvapor.com/2010/04/
announcing-enomaly-ecp-high-assurance.html, last
accessed June 2010, 2010.

[9] Garfinkel, T., Pfaff, B., Chow, J., Rosenblum,
M., and Boneh, D. Terra: A Virtual Machine-Based
Platform for Trusted Computing. SIGOPS Oper. Syst.
Rev. 37, 5 (2003), 193–206.

[10] Goodall, J. R. Introduction to Visualization for
Computer Security. In VizSEC (2007), pp. 1–17.

[11] Jajodia, S., Liu, P., Swarup, V., and Wang, C.
Cyber Situational Awareness: Issues and Research.
Springer, 2009, ch. Topological Vulnerability Analysis,
pp. 139–154.

[12] Jajodia, S., and Noel, S. Algorithms, Architectures,
and Information Systems Security. World Scientific
Press, 2007, ch. Topological Vulnerability Analysis: A
Powerful New Approach for Network Attack
Prevention, Detection, and Response.

[13] Krautheim, F. J. Private Virtual Infrastructure for
Cloud Computing. In HotCloud ’09: Workshop on Hot
Topics in Cloud Computing (2009), USENIX.

[14] Lippmann, R. P., and Ingols, K. W. An Annotated
Review of Past Papers on Attack Graphs, 2005.

[15] Mao, W., Martin, A., Jin, H., and Zhang, H.
Innovations for grid security from trusted computing.
In Fourteenth International Workshop on Security
Protocols (2006), LNCS, Springer-Verlag.

[16] Mell, P., and Grance, T. Effectively and Securely
Using the Cloud Computing Paradigm, October 2009.

[17] Mell, P., Scarfone, K., and Romanosky, S. A
Complete Guide to the Common Vulnerability Scoring
System Version 2.0. Available at
http://www.first.org/cvss/cvss-guide.html, last
accessed June 2010, June 2007.

[18] NetworkX Developers. NetworkX. Available at
http://networkx.lanl.gov/, last accessed June 2010,
2010.

[19] Noel, S., Elder, M., Jajodia, S., Kalapa, P.,
O’Hare, S., and Prole, K. Advances in Topological
Vulnerability Analysis. In CATCH ’09: Proceedings of
the 2009 Cybersecurity Applications & Technology
Conference for Homeland Security (Washington, DC,
USA, 2009), IEEE Computer Society, pp. 124–129.

[20] OpenVAS. OpenVAS, Open Vulnerability Assessment
System. Available at http://www.openvas.org, last
accessed May 2010, 2010.

[21] Percival, C. Cache missing for fun and profit, May
2005.

[22] Phillips, C., and Swiler, L. P. A graph-based
system for network-vulnerability analysis. In NSPW
’98: Proceedings of the 1998 workshop on New security
paradigms (New York, NY, USA, 1998), ACM,
pp. 71–79.

[23] Ristenpart, T., Tromer, E., Shacham, H., and
Savage, S. Hey, You, Get Off of My Cloud: Exploring
Information Leakage in Third-Party Compute Clouds.
In CCS ’09: Proceedings of the 16th ACM conference
on Computer and communications security (New York,
NY, USA, 2009), ACM, pp. 199–212.

[24] Ristenpart, T., and Yilek, S. When Good
Randomness Goes Bad: Virtual Machine Reset
Vulnerabilities and Hedging Deployed Cryptography. In
Proceedings of Network and Distributed Security
Symposium – NDSS ’10 (2010).

[25] Santos, N., Gummadi, K. P., and Rodrigues, R.
Towards Trusted Cloud Computing. In HotCloud ’09:
Workshop on Hot Topics in Cloud Computing (2009),
USENIX.

[26] Sheyner, O., Haines, J., Jha, S., Lippmann, R.,
and Wing, J. M. Automated Generation and Analysis
of Attack Graphs. In SP ’02: Proceedings of the 2002
IEEE Symposium on Security and Privacy
(Washington, DC, USA, 2002), IEEE Computer
Society, p. 273.

[27] Sheyner, O., and Wing, J. Tools for generating and
analyzing attack graphs. In Proceedings of formal
methods for components and objects (2004), LNCS,
pp. 344–371.

[28] Swiler, L., Phillips, C., Ellis, D., and Chakerian,
S. Computer-attack graph generation tool. In DARPA
Information Survivability Conference Exposition II,
2001. DISCEX ’01. Proceedings (2001), vol. 2, pp. 307
–321 vol.2.

[29] Swiler, L. P., Phillips, C., and Gaylor, T. A
Graph-Based Network-Vulnerability Analysis System.
In Sandia National Laboratories, Albuquerque,New
(1997), ACM Press, pp. 97–3010.

[30] Tenable Network Security. Nessus, the Network
Vulnerability Scanner. Available at
http://www.nessus.org, last accessed March 2010,
2010.

[31] Tran, T., Al-Shaer, E., and Boutaba, R.
PolicyVis: Firewall Security Policy Visualization and
Inspection. In LISA’07: Proceedings of the 21st
conference on Large Installation System Administration
Conference (Berkeley, CA, USA, 2007), USENIX
Association, pp. 1–16.

[32] Williams, L., Lippmann, R., and Ingols, K. An
Interactive Attack Graph Cascade and Reachability
Display. In VizSEC (2007), pp. 221–236.

[33] Williams, L., Lippmann, R., and Ingols, K.
GARNET: A Graphical Attack Graph and
Reachability Network Evaluation Tool. In VizSec ’08:
Proceedings of the 5th international workshop on
Visualization for Computer Security (Berlin,
Heidelberg, 2008), Springer-Verlag, pp. 44–59.

[34] Wool, A. A Quantitative Study of Firewall
Configuration Errors. Computer 37, 6 (2004), 62–67.

