
Proactive Security Analysis of Changes
in Virtualized Infrastructures

Sören Bleikertz
Carsten Vogel

∗

IBM Research - Zurich
{sbl,ten}@zurich.ibm.com

Thomas Groß
Newcastle University

thomas.gross@newcastle.ac.uk

Sebastian Mödersheim
DTU Compute
samo@dtu.dk

ABSTRACT
The pervasiveness of cloud computing can be attributed to
its scale and elasticity. However, the operational complexity
of the underlying cloud infrastructure is high, due to its
dynamics, multi-tenancy, and size. Misconfigurations and
insider attacks carry significant operational and security
risks, such as breaches in tenant isolation put both the
infrastructure provider and the consumers at risk.
We tackle this challenge by establishing a practical secu-

rity system, called Weatherman, that proactively analyzes
changes induced by management operations with respect
to security policies. We achieve this by contributing the
first formal model of cloud management operations that cap-
tures their impact on the infrastructure in the form of graph
transformations. Our approach combines such a model of
operations with an information flow analysis suited for iso-
lation as well as a policy verifier for a variety of security
and operational policies. Our system provides a run-time
enforcement of infrastructure security policies, as well as a
what-if analysis for change planning.

1. INTRODUCTION
Multi-tenant virtualized infrastructures offer self-service

access to a shared physical infrastructure with compute,
network, and storage resources. While administrators of
the provider govern the infrastructure as a whole and the
tenant administrators operate in partitioned logical resource
pools, both groups change the configuration and topology of
the infrastructure. For example, they create new machines,
modify or delete existing ones, causing large numbers of
virtual machines to appear and disappear, which leads to
the phenomenon of server sprawl. Therefore, self-service
administration, dynamic provisioning and elastic scaling lead
to a great number of configuration and topology changes,
which results in a complex and highly dynamic system.
Misconfigurations and insider attacks are the adverse re-

∗Work done at IBM, now affiliated with Hylastix, cv@hylastix.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC ’15, December 07 - 11, 2015, Los Angeles, CA, USA
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3682-6/15/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2818000.2818034

sults of such complex and dynamic systems. Indeed, even if
committed unintentionally, misconfigurations are among the
most prominent causes for security failures in IT infrastruc-
ture [20]. Notably, according to studies by ENISA [7] and
CSA [6], operational complexity, which leads to misconfigu-
ration and security failures, as well as isolation failures are
among the top threats in virtualized infrastructures. Isola-
tion failures put both the provider as well as the consumers
at great risk due to potential loss of reputation and the
breach of confidential data. Further, malicious insiders and
their attacks are considered a top, very high impact security
risk. Consider an example of isolation breach from miscon-
figuration, which we encountered in the security analysis of
a financial institution’s in-house VMware-based production
cloud: An administrator performed a wrong VLAN ID con-
figuration change leading to an unnoticed network isolation
breach between the high-security and the test security zone.
Core Idea: In combating such security failures, the as-

sessment of configuration changes and rigorous enforcement
of security policies is a crucial requirement. It is important
to establish whether an intended configuration change will
compromise the security of the system before the change
is deployed. We build a practical analysis system, called
Weatherman, that uses a model-based approach for assessing
configuration changes and their impact on the security com-
pliance of a virtualized infrastructure. We call our system
proactive as changes are analyzed before they are deployed.
Facing an intended configuration change, Weatherman

needs to establish how the infrastructure would be affected.
Our operations transition model (§3.1) covers security-relevant
operations and models their impact on the infrastructure
configuration and topology in a graph rewriting language.
For our example, it contains a model of the VMware opera-
tion UpdatePortGroup encoding how VLAN ID changes affect
the network. Having established a what-if infrastructure
model for the intended change, the next important question
is: How does the information flow and isolation change in
the system? Weatherman performs an information flow anal-
ysis in the what-if infrastructure model as an intermediary
step to determine isolation properties (§3.2). Finally, the
infrastructure model is checked against a variety of security
and operational policies, which are implemented as graph
matches and evaluated by the graph transformation engine
(§3.3). Overall, our system establishes whether a future con-
figuration change will constitute a security compromise and
rejects the change if a violation is detected (§4).
Our contributions are the following: 1) We propose the

first formal model of cloud management operations, the op-

erations transition model, that captures how such operations
change the infrastructure’s topology and configuration. We
express the operations as transformations of a graph model
of the infrastructure, which is based upon the formalism of
graph transformation [23]. 2) We propose a unified model
that integrates with the operations model the specification
of security policies as well as an information flow analysis
suited for isolation policies. We formalize a variety of poli-
cies, such as in the areas of isolation, dependability, and
operational correctness using graph matching. 3) Based on
our model, we design and implement a practical security
system, called Weatherman, which assesses and proactively
mitigates misconfigurations and security failures in VMware
infrastructures. We analyze and discuss the security of our
system for a practical deployment environment.

2. SYSTEM AND SECURITY MODEL
In Fig. 1 we illustrate our model of a virtualized infrastruc-

ture, which consists of (virtualized) computing, networking
and storage resources that are configured through a well-
defined management interface. We consider multiple admin-
istrators with different privileges, where the provider admin-
istrators govern the entire virtualized infrastructure, and
tenant administrators manage an assigned logical resource
pool. The model is poised towards a proactive analysis
based on operations that are intercepted at the management
host and the analysis system operates on a model of the
virtualized infrastructure.

A
ut

ho
riz

at
io

n
P

ro
xy

 (
P

E
P

)Provider Admin

Tenant Admin

Management
Operations

M
an

ag
em

en
t

H
os

t

Security Analysis
Weatherman (PDP)

VMs

Portgroups

VMs

Host

Portgroups

Network

VLAN 1 VLAN 2

vSwitch vSwitch

Storage

Host

vSwitch

vNIC

Host

Realization Model of Virtualized Infrastructure
Feedback

Change Plan operates on

Se
rvi

ce
 In

ter
fac

e

Policy
Decision

Figure 1: The System Model consists of a topology
model of the virtualized infrastructure, an autho-
rization proxy as Policy Enforcement Point, and a
run-time security analysis of operations.
We represent the virtualized infrastructure in a graph

model, called Realization model [4], which is an undirected,
vertex typed and attributed graph. The vertices of the graph
represent the components of the virtualized infrastructure,
which may be entire sub-systems, such as physical servers
or virtual machines, or low-level components, such as vir-
tual network interfaces. Vertices are typed, e.g., type vm
denotes a virtual machine, and annotated with name/value
attributes. The attributes encode detailed properties of the
components and capture their configuration. The edges of
the graph represent the connections and relationships among
components of the virtualized infrastructure, encoding its
topology. Fig. 1 illustrates the Realization model, which
spans compute, network, and storage resources. In particu-
lar, we illustrate the networking part in more detail. Physical
hosts and their hypervisors provide networking to VMs by
virtual switches that connect the VMs to the network. A
virtual switch contains virtual ports, to which the VMs are

connected via a virtual network interface card (vNIC). Vir-
tual ports are aggregated into port groups, which apply a
common configuration to a group of virtual ports. Virtual
LANs (VLANs) allow a logical separation of network traffic
between VMs by assigning distinct VLAN IDs to the port
groups. Our network model is focused on the OSI Layer2.
The Realization model is populated through an automated

extraction of the configuration of the virtualized infrastruc-
ture from the central management host and the translation
of the configuration into graph nodes and vertices. For each
element in the configuration, such as a virtual machine, it
constructs a corresponding model vertex and populates the
required attributes. To ensure a complete translation of all
relevant elements in the configuration, an element is either
translated or explicitly ignored. A translation warning is
thrown for unhandled elements. Since we are dealing with
a dynamic infrastructure, we also need to keep the graph
model of the infrastructure in sync. For this, we continu-
ously monitor the virtualized infrastructure for changes and
translate the observed changes into updates of the graph
model using an approach presented in [5].
Threat Model: We establish a threat model based on

the dependability taxonomy [1]. Agents, users and admin-
istrators can be malicious or non-malicious. Thereby, we
cover all classes of human-made faults. Faults can be intro-
duced deliberately as result of a harmful decision or without
awareness; faults can be introduced accidentally or by in-
competence. These fault classes include misconfigurations as
well as malicious attacks and resulting security failures and,
thereby, constitute a strong adversary model. Agents that
operate on behalf of a human are canonically covered by this
threat model, because the threat model is independent from
the issuer of an operation. Combined with the system model
covering compute, network and storage, this threat model
allows for a comprehensive security analysis of virtualized
infrastructures. As constraints, the adversary is bound to the
well-defined management host API and cannot subvert the
communication between the management hosts and the anal-
ysis system. In §5.1 we assess secure deployment approaches
to realize such a constraint in practice. The software security
of the management host and the hypervisors is out of scope.

3. A MODEL OF DYNAMIC VIRTUALIZED
INFRASTRUCTURES

We capture multiple aspects relevant for the analysis and
integrate them into a unified model based on graphs and
graph transformations. We represent the topology and con-
figuration of the virtualized infrastructure, establish how the
infrastructure can be changed by management operations,
and verify the infrastructure with regard to security policies.
As we are focusing on isolation properties, we further need
to determine information flows in the system.

3.1 Modeling of Infrastructure Changes
Wemodel the impact of management operations in terms of

infrastructure changes using graph transformations. We will
briefly introduce the formalism and describe our methodology
how we can create a model for a practical system, followed by
concrete examples of models for specific VMware operations.

3.1.1 Modeling Operations as Graph Transformations
We model each operation as a graph transformation rule,

which takes the graph representation of the virtualized in-

Table 1: Overview of Security-Critical VMware Operations [27].
Operation Description Policy Impact

AddPortGroup Creates a new port group on a given host and virtual switch, with a name and VLAN ID. Network Isolation
UpdatePortGroup Updates the name and/or VLAN ID of an existing port group on a given host. Network Isolation
RemovePortGroup Removes an existing port group on a host given by name. Dependability
UpdateNetworkConfig Updates the network configuration of a host; another means of creating or updating port groups. Network Isolation
CreateVM Creates a VM on a host with virtual storage and network resources (modeled as sub-operations). Compute Placement

AddVirtualDisk Creates a virtual disk for a VM with file backend. Storage Isolation
AddVirtualNic Creates a virtual NIC connected to a port group. Network Isolation

ReconfigVM Updates a VM’s configuration, including storage and network resources.
UpdateVirtualDisk Updates the file backend of a virtual disk. Storage Isolation
UpdateVirtualNic Connect a virtual NIC to a new port group. Network Isolation

frastructure as input and transforms it into a modified one.
According to [23], we define a graph transformation rule as
the following.
Definition 1 (Graph Transformation Rule)
A graph transformation rule p, also called a production
rule, has the form p : L

r−→ R, where graphs L and R are
denoted the left hand side (LHS) and right hand side (RHS),
respectively. The production morphism r establishes a partial
correspondence between elements in the LHS and the RHS
of a production, which determines the nodes and edges that
have to be preserved, deleted, or created. A match m finds
an occurrence of L in a given graph G, then G

p,m==⇒ H is an
application of a production p, where H is a derived graph.
H is obtained by replacing the occurrence of L in G with R.
An important extension to graph transformations are appli-
cation conditions that express constraints on the applicabil-
ity of a production rule, which includes constraints on the
attribute values of vertices. Further, parameterized rules
capture expected attribute values as parameters that need to
be satisfied by the application condition. This is important
for our model as management operations are parameterized.
The Operations Transition Model consists of graph trans-

formation rules and captures how operations change the
topology and configuration of a virtualized infrastructure.
Definition 2 (Operations Transition Model)
The Operations Transition Model consists of named and
attribute-parameterized graph production rules which is writ-
ten as the set P = {p1, . . . , pn} . Each rule corresponds to
a parameterized management operation op and models the
effects of op on the infrastructure as graph modifications on
the Realization graph model. The name of each production
rule corresponds to the name of the management operation.
The ordering of the rules is not relevant for the modeling as
the rules model the operations independently. However, the
ordering becomes important for the analysis (cf. §4) which
performs an ordered application of a subset of rules with
parameter values on a given infrastructure model graph.

3.1.2 Modeling Methodology
For any existing real-world virtualized infrastructure like

VMware, the API documentation does not offer a precise
formal definition and model, but rather a semi-formal de-
scription of the operations. A contribution of this paper is to
create a formal model that allows for precise statements to
be made and proved or refuted. It is of course not possible
to formally prove that our formal model captures the infor-
mal description, however there is a methodology to obtain a
“good” model by combining the following directions:
1) API Documentation: We follow the API documen-

tation that describes for each operation the functionality,

the required parameters as well as the preconditions and
effects that the operation has on the infrastructure. For
the relevant operations, we determine the parameters that
are security-critical and which will have an impact on the
model when the operation is performed. Overall, the API
documentation provides us with a list of relevant operations,
their parameters, and a high-level idea of their impact on
the infrastructure.
2) Infrastructure Change Assessment: In order to

understand how the infrastructure is changed in detail by an
operation, we inspect the configuration of the infrastructure
before and after the operation has been issued. For each oper-
ation that we have selected based on the API documentation,
we vary the parameter values to determine their different
effects, if applicable. For example, varying the VLAN identi-
fier parameter of a virtual network re-configuration preserves
the same effect, whereas varying the device configuration of a
new virtual machine creation may lead to different topology
changes, e.g., attaching the VM to a different virtual network.
We do not only study the differences in the configuration
after each operation, we also investigate the differences in the
resulting graph models. The changes from the graph model
of the configuration before the operation was performed and
the graph model after the operation guides us how a graph
production rule of the operation may look like. The graph
model changes include new and deleted vertices and edges,
as well as attribute changes.
3) Validation with Administrative Tasks: Finally,

we also performed common administrative actions from the
graphical management client, which itself issues the docu-
mented API operations. We intercepted and analyzed these
issued operations and discovered that the management client
makes use of other operations from the API to perform the
same task. For example, to change the VLAN identifiers
of a virtual network component the usual operation is Up-
datePortGroup, however the client software issues the much
more general operation UpdateNetworkConfig. We extended
our model to include these other variations of performing
security-critical tasks.

3.1.3 Modeling of a Practical System
The VMware API (v5.0) consists of 545 methods [27], but

many of these operations do not affect the topology or con-
figuration of the virtualized infrastructure, because they deal
with VMware-specific management and operations aspects
such as licensing and patch management, handling of admin-
istrative sessions, or diagnostics and alarms. We identified 95
operations that modify the topology or configuration of the in-
frastructure. We model a security-critical subset of VMware
management operations as listed in Table 1, which also in-
dicates potential policy violations (cf. §3.3). We consider

string
3

file

string
2

vdisk

host

storagepool

string
0

vm

string
1

real

name

real

real

name

real

real

real

name

name

real

real

(a) AddVirtualDisk

int
3

vport

string
2

host

vswitch

portgroup

string
0

string
1

int

∀

int

vlanIdreal

vlanId

name

@

vlanId

real @

real

name

name

vlanId

(b) UpdatePortGroup
Figure 2: Storage and network operations modeled
as graph transformation rules in GROOVE.
changes to the virtual compute, network, and storage infras-
tructure, such as the creation of virtual machines, creation
or updates of virtual switches and interfaces, and attachment
of storage to virtual machines. Complex operations, such as
creating VMs, are broken down into sub-operations.
From the subset of operations, we present the production

rules of two operations: The UpdatePortGroup operation
changes the isolation property of a virtual network, as well as
the sub-operation AddVirtualDisk of the CreateVM operation
that connects a new virtual disk to a created VM. The
two examples cover a spectrum of operation classes: First,
operations that create infrastructure elements as well as
updating existing ones; Second, operations that work on
different resource types, namely, storage and network.
The production rules are illustrated in Fig. 2. We selected

GROOVE [9], a tool for specifying and applying transfor-
mation rules, as our graph transformation environment and
the rules are shown in its visual notation. Each rule is rep-
resented by a graph that describes both the LHS and RHS
(cf. Def. 1) with the following semantics: Readers (thin
line) are nodes and edges that need to be matched in the
graph for the rule to be applicable and which are preserved
in the transformation, i.e., they belong to both the LHS and
RHS. Creators (bold line) for newly added nodes and edges,
which only belong to the RHS. Erasers (thin dashed) are
nodes and edges that need to be matched, and which will be
deleted by the transformation, i.e., only belong to the LHS.
Embargoes (thick dashed) are nodes and edges that need
to be absent in the graph, in order that the rule matches.
Disk Creation Operation: AddVirtualDisk.
AddV i r t ua lD i s k (s t r i n g hostname , s t r i n g vmName , ←↩

s t r i n g s t o r a g epoo l , s t r i n g f i l e n ame)

As part of the creation of a virtual machine, a virtual disk
is created and attached to the VM, which is identified by
a given hostname and the VM name. Virtual disks are
file-based (given by a filename), and the file is residing on
a storage pool, given by a name. The production rule of
Fig. 2a finds the corresponding subgraph where the names
of host, VM, and storage pool match the rule’s parameters.
New nodes for the virtual disk (vdisk) as well as the file
backend (file) are created and connected to the matched

subgraph by specifying them as creator elements (visually
thick line). In GROOVE , attributes of a node are represented
by data nodes, visually indicated as ecliptic shapes, that are
connected by a labeled edge, where the label denotes the
attribute name. The numeric superscript on data nodes show
that an attribute value is matched against a rule parameter,
e.g., the host’s name is matched against parameter 0.
Virtual Network Update Operation: UpdatePortGroup.
UpdatePortGroup (s t r i n g hostname , s t r i n g pgName , ←↩

s t r i n g newPGName , i n t newPGVlanId)

Using this operation, an administrator can change the config-
uration of an existing port group. The port group is identified
by its name, as well as the host where it resides on, and the
operation allows to change the port group’s name and VLAN
ID. Changing attributes is modeled as changing the edges
to different data nodes based on the input parameters. The
VLAN ID is not only contained in the port group nodes, but
also in the associated vport nodes, i.e., virtual switch ports.
Therefore, changing the VLAN ID of the port group also
requires to change all virtual ports associated to that port
group. For this we use the universal quantifier ∀ that applies
a sub-rule, given by nodes connected to the quantifier with @
labeled edges, to all its matches [21]. In this case, it updates
the vlanId attributes of all matching vport nodes.

3.2 Dynamic Information Flow Analysis
Our information flow analysis computes potential infor-

mation flows within the infrastructure, and thus enables the
system to determine isolation failures between tenants. A set
of graph production rules capture trust assumptions on the
isolation of particular infrastructure elements, and construct
the information flow graph by introducing edges that denote
if flow is either permitted or denied.
We are drawing from existing work that computes infor-

mation flow in virtualized infrastructures by using a graph
coloring and traversal approach based on a set of traversal
rules [4]. The traversal rules define for a pair of connected
Realization model vertex types if the traversal and color-
ing should proceed or not. The rules further consider the
traversal direction, vertex attributes, and the current graph
color. We adapted the existing traversal rules, which capture
best-practices on virtualization and network security, and
formalized them as graph production rules. The challenge of
such a formalization is that a direct encoding of the graph
coloring approach in GROOVE would result in an expensive
blow-up of the state space. Therefore we opted for the con-
struction of an information flow graph instead of performing
a graph coloring. Another challenge is the formalization of
color-dependent traversal rules, which have been used to
model forms of network tunneling such as virtual networks
with VLANs. We model the tunneling with “fast edges” that
connect the logical endpoints of the tunnel directly with
an information flow edge. The fast edge rules capture the
termination properties of the original traversal rules, e.g., the
endpoints must have the same VLAN identifier, as well as the
connectivity condition of the endpoints, i.e., they are mutu-
ally reachable. Overall, our formalization of the information
flow analysis as graph transformations differentiates from the
existing work [4]. In particular, we construct an information
flow graph as an overlay that enables us to dynamically ad-
just it upon changes in the system model. Further, as we are
addressing the previous challenges, our approach is better
suited to be expressed as graph transformations.

hostvm

∀>0

flow

@

noflow

real
@

(a) Simple Stop Rule: Trusted hy-
pervisor prevents flow from VMs
to Host and vice versa.

∀>0

noflow

@

flow

real
@

(b) Default Rule: Flow between
any pair of connected vertices not
yet covered by a noflow edge.

vswitch

∀>0 pg2 : portgrouppg1 : portgroup
vlanId == pg2.vlanId

vswitch

real@

flow+

flow

real

@ @

@

(c) Fast-Edge Rule: Flow between
Portgroups with the same VLAN
ID and connected VSwitches.

Figure 3: Examples of different kinds Information Flow Rules as modeled in GROOVE as Production Rules.

3.2.1 Information Flow Model
We now define our information flow model and present the

set of rules that construct such the information flow graph.

Definition 3 (Information Flow Model)
We model information flow in a virtualized infrastructure,
given by a Realization model graph GR = (VR, ER), as a
directed and edge-typed graph GI = (VI , EI), where VI = VR.
An edge type function te : EI → {flow, noflow} denotes for
each information flow edge e = (u, v) if information flow
from u to v is possible (flow) or not (noflow).

We denote the information flow graph as an overlay on the
realization model graph, because they share the same vertex
set. We consider a unified graph G = (VR, ER ∪ EI) where
the Realization model graph edges are typed real.
The information flow analysis takes a Realization model

graph, a set of traversal rules in the form of graph produc-
tion rules (as shown in Fig. 3), and applies them on the
Realization model, thereby constructing the information flow
graph overlay. When the Realization model changes, e.g.,
due to the operations transition model, we also adjust the
information flow graph.

3.2.2 Information Flow Rules and Application
We differentiate between three kind of information flow

rules: A simple rule describes information flow between a
pair of adjacent vertices given by their types with potential
conditions on the vertices’ attributes. A default rule is a
simple rule that matches any pair of adjacent vertices without
any conditions. Finally, a fast-edge or complex rule describes
information flow between non-adjacent vertices.
Simple Information Flow Rules: The first kind of

rules are used both when the information flow is computed
for the first time on the initial graph, or when new edges
are added. They are simple in the sense that they work on
directly adjacent nodes connected by a Realization model
edge (real), and either introduce a directed information flow
edge for flow or noflow. Fig. 3a shows a simple information
flow rule that stops information flow between a host and a
virtual machine (vm) by creating bidirectional noflow edges
between them, if not already present. This captures the
(arguable) trust assumption that no side-channel information
leakage exists between virtual machines on the same host [22].
The noflow edge is created with a conditional new, i.e., it is
only created if not already present by combining a creator
and embargo edge. Applying the simple rules will eventually
terminate when all pairs are connected by either a flow
or noflow edge. We design the rules to be confluent, i.e.,
whenever more than one explicit rule is applicable, it does
not matter for the result which one we take first. We can
thus use the universal quantifier ∀>0, which requires at least

one match for the rule to be applicable, to express that we
apply the production rule to all possible matches greedily
(i.e., we do not have a state exploration).
Default Rule: The above simple rules typically represent

trust assumptions on isolation properties of elements in the
infrastructure and therefore introduce noflow edges. The
flow edges are conditionally introduced by a default rule, as
shown in Fig. 3b, if neither a flow nor noflow edge are present
between a pair of nodes. The rule is applied when no more
simple rules are applicable. Thus, the default means that we
assume information may flow when the simple rules do not
tell us otherwise. This may be too pessimistic, but with this
over-approximation we are generally on the safe side. We
achieve the operational aspect by designing simple GROOVE
rule application strategies, in this case to first apply simple
rules as long as possible and then apply the default rule as
long as possible, i.e., until all node pairs have been evaluated.
Fast-Edge Information Flow Rules: A direct encod-

ing of the original graph coloring of [4] is not suitable in
GROOVE as the change in the graph state leads to an expen-
sive blow-up of the state space. A feasible alternative is the
introduction of fast-edges representing the pairs that need to
have the same coloring (i.e., allowing a flow). As an example,
Fig. 3c shows a production rule that creates a fast-edge be-
tween two VLAN endpoints that are not necessarily directly
connected by a real edge, but which are connected through
a path of flow edges. Here, two VMware port groups, which
are modeled as portgroup with a VLAN identifier, are hosted
on different virtual switches, and the rule fires for pairs of
portgroups with the same VLAN identifiers, if the underlying
switches are connected. A similar rule exists when two port
groups are connected to the same vswitch.
Adjust Existing Information Flows: The dynamic

information flow analysis needs to adjust the existing infor-
mation flows if the Realization model graph changes. The
removal of information flow edges that are connected to re-
moved nodes is covered by the underlying formalism (Single
Push-Out [23]) as dangling edges are removed. For each pair
of nodes that are no longer connected by a real edge, but
still feature an information flow edge, we need to remove
the flow edge. This is accomplished by two production rules
similar to the simple information flow rules, but with two
untyped nodes, a condition that no real edge is present, and
the removal of either a flow or noflow edge.
The information flow edges that are based on changed

attributes are recomputed if their predicates do not hold
anymore. That means, for each information flow rule that
introduces an information flow edge based on an attribute
condition, such as the VLAN ID attribute dependent rule of
Fig. 3c, we have an adjusting production rule that verifies
that the attribute condition still holds; if not, it revokes the

seczone

vmvm

seczone seczone

flow+

containscontainscontains contains

(a) Strict Zone Isolation
(Negative)

∃

∀

vm vmseczone

seczone seczone

@

@@
in

contains contains

@ @

contains contains

flow+

(b) Strict Zone Isolation
(Positive)

host vm

placezone placezone

containscontains

real

contains

(c) Compute Placement

seczone

vm
guardian

vm
end

vm
start

path

seczone seczone

contains contains

has

hashas

contains contains

(d) Guardian Zone Isolation:
Missing Guardian on Path

pathvm
start

vm
end

vm
guardian

seczone

seczone seczone

seczone seczone

contains

containscontains

contains

has

contains

has

contains

+

has

contains contains

(e) Guardian Zone Isolation:
Wrong Zoning of Guardian

depzone

vm
end

vm
start

path

∀
count < 2

has

containscontains

has

@ @

@

(f) Multiple Disjoint
Paths

Figure 4: Security and Operational Policies modeled in GROOVE as Graph Matches.

information flow edge. Adjusting the information flow graph
based on changes in the Realization model may further influ-
ence connectivity-dependent information flow edges, such as
the ones produced by the fast-edge portgroup rule. Similar
to an adjusting production rule for attribute changes, we
also have a production rule that deletes flow edges if their
connectivity condition is no longer satisfied.

3.3 Infrastructure Policies as Graph Matches
The final piece of our analysis effort is the specification

of security and operational policies. We formalize a wide
variety of practical policies, such as isolation of security zones
and prevention of single point of failures, as graph matches.
Instead of production rules that transform the model, the
policy rules only try to match a given graph pattern.
We usually express the security policies as attack states,

i.e., a state of the topology or configuration that violates
the desired security properties. Instead of verifying that a
security property holds for the entire infrastructure, we try
to find violations. However the formalism and analysis allow
for both the specification of positive and negative policies.
The analysis stops, i.e., finds a violation, if a propositional
formula of the form AttackP olicy1 ∨ ¬P ositiveP olicy1 ∨
AttackP olicy2 . . . is satisfied. That is, an attack state has
been found when an attack policy has matched, or a positive
policy no longer matches. Attack state policies have an
advantage in the root-cause analysis of policy violations, since
the analysis returns the matching part of the infrastructure
that causes the violation, i.e., the attack state. Whereas for
positive policies, the analysis does not provide a reason why
a policy rule no longer matches. In the following we present
a subset of policies that stem from security requirements of
practitioners of infrastructure cloud deployments.
Strict Security Zone Isolation: We represent tenants

as security zones which group together infrastructure ele-
ments, such as virtual machines, into zones. Each security
zone is represented as a single vertex of type seczone with
directed contains edges, that represent zone membership, to
Realization model vertices. The zoning of elements is a policy
setup performed by a security operator.
In this policy we require a strict isolation, i.e., no informa-

tion flows, between any pair of zoned infrastructure elements

that are not members of at least one common security zone.
With the example of VMs as security zone members, we
show both a positive and negative specification of this policy.
Although we use VMs as an example, any infrastructure
element can be grouped into security zones. Fig. 4a shows a
negative/attack specification of the policy: We have a policy
violation for a pair of zoned VMs that are connected by an
information flow path (flow+) if they are not members of
the same security zone. The statement flow+ is a regular
expression on edges and requires at least one flow edge. On
the other hand, a positive specification of this policy (Fig. 4b)
states that for all zoned VM pairs, which can communicate,
there must exists at least one zone that contains both VMs.
We allow elements to be part of multiple security zones,

and our policy expects at least one common zone for element
pairs with information flow. A problem arises when a multi-
zoned element facilitates information flow between single-
zoned elements. For example, if a VM acts as a firewall and
is part of two security zones, then VMs of one zone may
communicate with VMs of the other zone via the firewall VM,
which is a violation of strict isolation. We handle inter-zone
trusted elements with the guardian isolation policy (§3.3.1).
Compute Placement mandates the assignment of com-

puting resources, that is on which physical hosts virtual
machines must run. The motivation stems from both perfor-
mance and availability reasons as well as security and legal
requirements. Imagine that VMs must run on hosts from a
particular geo-location due to privacy laws and data security
requirements. By grouping physical hosts and VMs together
into placement zones, similar to the previous security zones,
this policy is violated if a VM is hosted on a physical server
of another placement zone or no zone at all (cf. Fig. 4c). A
zoned host can run VMs that are not part of any zone.
The related security concern of side-channel attacks due

to VM co-location on the same physical host [22] is covered
by the security zone isolation policy. The trust assumption if
a particular hypervisor provides strong VM isolation or not
is captured in the user-configurable information flow rules
(cf. §3.2). From practical security policies we learned that
co-locating different tenants is allowed only for a particular
set of hypervisor products that are considered trusted.

3.3.1 Policies with Information Flow Path Conditions
We are also dealing with policies that have requirements

on the information flow paths. For example, the guardian
isolation policy requires that a trusted component, e.g., a
firewall, is part of a flow path between elements of different
zones. To express such policies, we can no longer rely on the
flow+ path construct, because we cannot inspect the found
paths. We model an explicit path finding with traversal
rules that add vertices to a path vertex with directed edges
to denote path membership. The state exploration applies
the traversal rules, which perform a graph traversal on flow
edges, and constructs all possible paths between pairs of
start and end nodes. We can now express policies that verify
conditions on the found paths.
Guardian Security Zone Isolation: Given a pair of

elements that are not members of a common security zone
and that are connected by an information flow path. It is
mandatory that the communication is mandated by a trusted
guardian, i.e., a vertex flagged as guardian must be part of
the information flow path between the pair (cf. Fig. 4d).
Additionally, the guardian must share a security zone with
each element of the pair (cf. Fig. 4e). The first policy is
violated if there exists a path between a pair of VMs, which
do not belong to a same security zone, and the path does not
contain a VM flagged as guardian. The second policy catches
the violation that a guardian VM exists on the path, but the
guardian does not share a security zone with either the start
or end VM. The negative edge labeled with + represents an
OR condition for the two negative conditions of the VM and
guardian zone matching.
Multiple Disjoint Paths: We define a dependability

zone as a group of infrastructure elements that require mu-
tually redundant fully disjoint paths. The motivation is to
prevent single point of failures between dependent infrastruc-
ture elements. Fig. 4f shows the corresponding rule as an
attack state matching. We are using a universal quantifier
with the ability of counting the number of paths between a
pair of nodes of the same dependability zone (depzone). The
policy is violated if the paths count is less than two, or any
redundancy factor that is required.

3.3.2 Infrastructure Policies Summary
We demonstrated a variety of policies ranging from zone

isolation, placement of virtual machines, to the prevention of
single point of failures. This covers the policy areas of isola-
tion, operational correctness, and failure resilience that have
been introduced for virtualized infrastructure policies [3]. We
showed the formalization of those policies as graph matches
in GROOVE , and further explored different ways to express
policies, such as negative and positive matching. Besides
an expressive and general-purpose approach, the usability is
equally important so that end-users, such as auditors of cloud
environments, can specify new policies. GROOVE offers a
graphical editor to develop new production rules, in fact the
policies shown in Fig. 4 have been develop graphically and
exported as-is. This provides an intuitive and efficient way
of specifying new policies.

4. AUTOMATED ANALYSIS
Weatherman provides an automated analysis of configu-

ration and topology changes in virtualized infrastructures.
Its architecture, as shown in Fig. 5, obtains all the necessary
inputs for the analysis and invokes GROOVE as the graph

transformation engine. Based on this architecture, we de-
scribe two application scenarios for change management as
well as for run-time enforcement of security policies and the
mitigation of misconfigurations.

Dynamic
Security Analysis

configuration & topology

Heterogenous Clouds
Actual State

Security Goals
Desired State

Orchestrator

Reports

Groove

realization
graph

security policy graph grammar

Graph Transformation

Dynamic Behavior
Operations

Transition Model

operations model

Configuration
Discovery & Translation

Trust Assumptions
Information Flow

Rules

information flow rules

4.3.

1. 2.2.

1.

3. 4.

control program

Figure 5: The system architecture consists of i)
Configuration Discovery & Translation on the left,
which extracts the infrastructure configuration and
builds the Realization model; ii) the Orchestrator in
the middle, which prepares the graph grammar for
the analysis based on all inputs; iii) and the Graph
Transformation on the right that employs GROOVE.

For obtaining the required inputs, the involvement of the
Weatherman user is kept to a minimum as we are striving
for an automated approach. The rules for the information
flow analysis as well as the security policies come as pre-
defined sets, and only in specific cases need to be modified
by the user. Security policies may require further input from
the user, such that virtual resources need to be assigned to
security zones for the zone isolation policy.
Run-time Analysis of Changes enables the automated

mitigation of misconfigurations and enforcement of security
policies. We introduce an authorization proxy that acts as
a reverse HTTPS proxy in front of the otherwise shielded
management host. The proxy intercepts management opera-
tions and inspects them for the analysis. The proxy keeps
sessions for each logged in administrators and associates the
operations with them. Operations and configuration changes
are only forwarded by the proxy to the management host if
the Weatherman analysis indicates no security policy viola-
tion. In a secure deployment (cf. §5.1), it allows to protect
virtualized infrastructures from malicious adversaries.
The Policy Decision Point (PDP) of the authorization

proxy translates intercepted management operations into a
change plan in the GROOVE control language. We have
translation modules for all covered operations. For instance,
from an UpdatePortGroup operation the proxy extracts the
host, identifying port group name, new VLAN identifier, as
well as new port group name. The PDP then delegates the
change plan analysis to Weatherman. The Policy Enforce-
ment Point (PEP) only accepts the intercepted operations
if they are compliant with the policies; otherwise, they are
rejected. The authorization proxy refrains from forwarding
the management operation in the reject case, i.e., they are
not deployed in the actual infrastructure. It signals an error
back to the administrator client with the policy violation.

Change Plan Analysis: The goal of the change plan
analysis is to support the planning of complex configuration
changes and to verify their security compliance. The focus of
this complementary approach lies on the planning of potential
changes and perform what-if analyses, whereas the run-time
analysis inspects the operations that are currently deployed.
In fact, change management, and change plans in particular,
are often employed as part of IT infrastructure operation
workflows and processes. In our case, an administrator drafts
a sequence of desired changes that he wants to be provisioned.
The crucial question is: Will the proposed changes render

the infrastructure insecure? To answer this question, the ad-
ministrator submits the change plan to Weatherman, which
applies the changes to the graph model of the infrastructure
and verifies the resulting infrastructure state against the
desired security policies. By that, the tool can establish
a what-if analysis and determine what security impact the
intended changes will have on the infrastructure. If the new
graph model obtained from the application of the changes
violates the security goals, the tool notifies the administrator
to reject the proposed change plan and provides the analysis
output of the matched policy violation as diagnosis. Other-
wise, the tool returns that the intended changes are compliant
with the security goals, after which the administrator can
provision the changes to the infrastructure.

5. EVALUATION

5.1 Security Analysis
The analysis is based on the system model of §2 and

the run-time analysis (§4): Weatherman is deployed with
an authorization proxy (PEP) that intercepts management
operations, forwards them to the policy decision point (PDP)
for analysis, and which in turn issues an accept/deny decision.
We establish a secure deployment that allows to obtain the
integrity property based on a small set of assumptions.
1) Limited Access [access]: The adversary accesses the

virtualized infrastructure through the management interface
only, which can be enforced by placing hosts into lockdown
mode [28] with no privileges to revoke it. Further, this implies
that the adversary does neither have physical or root access
on the physical hosts, direct access to the hypervisor nor
physical access to network and storage. The adversary does
not have access as super_admin, who manages the privileges.
Weatherman and the authorization proxy are deployed in
a hardened configuration and thereby placed under [access].
In practice the hardening can be further achieved by reduc-
ing the attack surface of the deployment, e.g., by using a
hardened hypervisor, no multi-tenancy, and attestation.
2) Network Isolation [netisolation]: The management net-

work is isolated from adversarial access, which implies that
the management host cannot be accessed by the adversary di-
rectly, but only through the authorization proxy. We call the
network between authorization proxy and management host
netsec, either enforced 1) as dedicated physical network, 2) as
VLAN in the physical switch, where virtualization adminis-
trators do not have access, or 3) as a virtual network with a
dedicated VLAN identifier, where the administrators do not
have privileges to change it. Weatherman and the authoriza-
tion proxy are deployed in netsec and their communication
with the management host is covered by [netisolation].
3) Authentic View and Faithful Model [authenticview]:

Weatherman has an authentic view of the topology and

configuration of the infrastructure as well as a faithful model
of it, including the consequences of management operations.
This condition stems from the modeling approach introduced
in §3.1: The Realization model provides a faithful graph
representation derived from the actual configuration as the
structure is encoded there. The operations model captures
how individual management operations change the state of
the infrastructure and thereby the Realization model.
Definition 4 (Integrity of Run-time Analysis)
If a set of management operations S has been provisioned
to the virtualized infrastructure, then Weatherman has pre-
viously verified S with respect to the specified security goals
and issued an accept decision and the management host con-
sequently provisioned S.

Proof Sketch. We pursue the argument by back-tracking
starting from a set of management operations S received at
the management host. 1. Integrity of communication: We
know that the management network netsec between manage-
ment host, authorization proxy and analysis is covered by
[netisolation] and gain integrity on S and on topology data.
As the management host received S at the management
network, it must have been forwarded by the authorization
proxy upon an accept decision from the analysis (PDP). The
analysis thereby must have verified S under the given security
policy and issued an accept decision. 2. View equivalence
on the topology: From the assumption [authenticview], we
obtain both the faithful Realization model of the topology
and representation of consequences in the operations model
as necessary conditions. Given that authentic view and faith-
ful model, the tool can only have issued an accept decision,
if none of the alarm states defined in the security policy
matched the what-if state of the topology amended with
the management operations of S. 3. View equivalence on
S: Weatherman and the authorization proxy are protected
from the adversary’s direct influence by [access]. The man-
agement operations S are transferred between authorization
proxy and Weatherman with integrity, by which Weatherman
analyzes the very same S as staged for provisioning at the
authorization proxy. We have that the S received at the
management host must have been the same submitted at the
authorization proxy and analyzed by Weatherman, which
could only have been forwarded if a what-if analysis did not
match an alarm state. 4. Exclusive provisioning through the
management host: Finally, given the [access] condition, we
have that management operations can only be provisioned
through the management host and that the adversary cannot
access hypervisors and physical hosts directly. Thereby, S
must have been provisioned by the management host itself
after the verification and an accept decision.

Discussion: The run-time analysis (§4) offers protection
against malicious insiders, while the change-plan analysis (§4)
offers non-malicious administrators a way to verify changes
before provisioning. This approach benefits system availabil-
ity, since honest administrators can evaluate their change
plans pro-actively to gain confidence that their changes will
not be denied at run-time. The security analysis hinges on the
authentic view of Weatherman when it comes to the topology
structure and the consequences of management operations.
Even though §3.1 seeks to establish a faithful representation
and a systematic approach to validate to model against real-
ity, it is still the case that “the map is not the territory”. The
Realization and operations models are likely to suffer from

subtle differences to the real configuration. Furthermore, the
effectiveness of Weatherman’s analysis largely depends on
the quality of the input specifications: First, the informa-
tion flow rules represent the trust assumptions on isolation
properties and determine which components are assumed to
pass on information. Second, Weatherman only finds attack
states for configuration changes as provided in the specified
security policy. Its analysis offers a model checking for these
attack states; it does not constitute a security proof.
Security Testing: Besides arguing about the security

of our system, we systematically test its ability to detect
known violating operations and differentiate them from non-
violating ones, on the operations set of §5.2. For each opera-
tion, we probabilistically select parameters either from a set
of violating or non-violating ones. We issue the operation
to the authorization proxy with an expectation that for the
violation case we obtain a reject decision with a particular
policy violation as the reason. Otherwise, for non-violating
parameters, the operation should be accepted. Weatherman
detected all violation cases and behaves as expected. Clearly,
security testing and modeling are going hand-in-hand as an
iterative process, in which we make the experience that cor-
ner cases discovered in security testing serve well to improve
the model and to close the maps-territory gap.

5.2 Scalability and Optimizations
In a semi-production environment with 100 VMs, we mea-

sured an analysis time of Weatherman in the order of 500ms
(cf. Fig. 6) for the operations of Table 1, which is suitable
for run-time analysis. We further studied the scalability of
Weatherman with a VMware infrastructure simulator, which
is part of the official VMware vCenter server appliance. For
a simulated environment with 1000 VMs, which resulted in a
Realization model graph with 4121 vertices and 6140 edges,
we obtained an overall analysis time of 253s for finding a
violation in a UpdatePortGroup operation. This makes our
approach suitable for the change plan analysis, but causes
a long blocking in a run-time analysis. In a simulated en-
vironment with 10000 VMs (41201 vertices, 61400 edges)
GROOVE ran out of available memory.

0 100 200 300 400 500 600 700
Runtime [ms]

VLAN ID update
(Violation)

VNic creation
(Violation)

VLAN ID update

VDisk creation

VNic creation

VM creation
Graph Serialization
Groove Startup
Initial InfoFlow
Change Ops
Adjust InfoFlow

Figure 6: Time measurements for the analysis of a
variety of operations, including two violating ones
(the last two). We measure the times for the graph
serialization, GROOVE start-up, initial and adjust-
ing information flow analysis, as well as applying the
change operation.
We stress that establishing the models, methodology, and

analysis system has been the primary focus of this paper, and
not providing an optimized and scalable analysis. We now
outline multiple directions of optimizations and scalability
improvements. A short-term optimization is to reduce the
size of the Realization model graph by removing nodes of

types that are not addressed by production rules of the
grammar. Possible long-term optimizations are to transform
GROOVE graph grammars into native code (an approach
employed by GrGen [8]) and to exploit a parallel processing
of production rules (in particular for rules with universal
quantifier and the confluent simple information flow rules).

6. RELATED WORK
Misconfigurations in networks have been a problem in the

operation of IT environments for a long time and solutions
have been proposed. Mahajan et al. [18] studied misconfigu-
rations in BGP routing configuration changes by listening
to changes and assess these. Kim et al. [16] analysed the
evolution of network configurations by mining a repository of
network configuration files. With the rise of software-defined
networking, real-time monitoring and policy checking have
been achieved in these environments [13, 14]. In dynamic
virtualized infrastructures, vQuery [26] monitors configu-
ration changes in VMware environments and assess these
changes with regard to performance implications. Schiffman
et al. [25] proposed a monitoring system called Cloud Veri-
fier that allows to monitor hosts and virtual machines with
regard to integrity requirements based on trusted computing
mechanisms. Overall, these approaches work in a reactive
way, i.e., they assess changes in the infrastructure after they
have happened, whereas we aim for complementary proactive
mitigation of misconfigurations.
Trustworthy hypervisors, such as sHype [24], offer strong

guarantees and mechanisms of isolation between VMs on a
single physical system. Our user-configurable information
flow rules can capture the different trust assumptions in the
isolation of the hypervisor, and can embed the hypervisor
isolation into the larger context of virtualized infrastructure
isolation. The Trusted Virtual Datacenter (TVDc) [2] offers
isolation and integrity by leveraging a trustworthy hyper-
visor, trusted computing, and automated setup of network
isolation. Weatherman is complementary to that by i) pro-
viding a secondary control mechanisms that checks if the
infrastructure is deployed according to a high-level security
policy; ii) verifying the changes that are automatically per-
formed by the TVDc system; and iii) providing checks for
further policies such as the mitigation of single point of fail-
ures. The security of VM images [29] is an important part
of the virtualized infrastructure security, but it is orthogonal
to our work that focused on the security of the topology.
A model-based approach for configuration management has

been proposed in [19] that formalizes network configurations
in first-order logic and employs Alloy [11] for model finding,
in order to detect configuration errors. The model is limited
to network configurations, whereas our model covers the
entire virtualized infrastructure and provides a fine-grained
model of management operations. Similarly, the verification
of change operations in the context of statically and dynami-
cally routed networks has been studied [10]. Kikuchi et al.
analyze cloud infrastructure changes using Alloy [15], where
changes are manually specified. Our approach can automati-
cally analyze changes at runtime using our operations model.
Further, we perform an information flow analysis to deter-
mine isolation properties. The analysis of firewall policies,
e.g., using model-checking [12], provide a complementary
approach and covers higher levels of the networking stack.
Graph transformations and in particular GROOVE have

found applications in other security-related scenarios. A secu-

rity case study has been presented in [9] that deals with the
graph-based modeling of physical and digital environments.
The modeling and analysis of role-based access control sys-
tems has also been achieved using graph transformations [17].
This demonstrates the generality of graph transformations
to a wide variety of security application domains.

7. CONCLUSIONS
In this work we address the problem of misconfigurations

and resulting security failures in virtualized infrastructures.
Our solution consists of a practical tool called Weatherman
that employs a formal model of cloud management opera-
tions, an information flow analysis to determine isolation
properties, and a policy verifier in order to proactively assess
infrastructure changes with regard to their security impact.
For instance, we are able to detect and mitigate changes that
would i) break the network isolation of tenants, ii) create
virtual machines in the wrong location, and iii) introduce
single point of failures. We offer the run-time enforcement
of security policies as well as change planning for what-if
analyses. While for concreteness we focus in this paper on
a particular practical system and goals, we believe that our
work is a first step towards a general verification methodol-
ogy for virtualized infrastructures. One key aspect of our
approach is the use of graph rewriting, which offers an ex-
pressive and intuitive method for formalizing the operations,
information flow analysis, as well as policies.
As part of future work, we consider the integration of

access control with our operations transition model, where we
extend our existing operations model with required privileges.
Given a set of users and their privileges, we can then model-
check which operations can be issued by the users that may
result in an insecure state.

Acknowledgments
This work is partially supported by the EU H2020 projects SUPER-
CLOUD (grant No. 643964) and PrismaCloud (grant No. 644962),
and Swiss Secretariat for Education, Research and Innovation (con-
tract No. 15.0025). We thank our shepherd John McDermott and
the anonymous reviewers for insightful comments, as well as Arend
Rensink for supporting us with GROOVE.

8. REFERENCES
[1] Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C.

Basic concepts and taxonomy of dependable and secure
computing. Dependable and Secure Computing, IEEE
Transactions on 1, 1 (jan.-march 2004), 11 – 33.

[2] Berger, S., Cáceres, R., Pendarakis, D., Sailer, R., Valdez,
E., Perez, R., Schildhauer, W., and Srinivasan, D. Tvdc:
managing security in the trusted virtual datacenter. SIGOPS
Oper. Syst. Rev. 42 (January 2008), 40–47.

[3] Bleikertz, S., and Groß, T. A Virtualization Assurance
Language for Isolation and Deployment. In IEEE
International Symposium on Policies for Distributed Systems
and Networks (POLICY’11) (Jun 2011), IEEE.

[4] Bleikertz, S., Groß, T., Schunter, M., and Eriksson, K.
Automated Information Flow Analysis of Virtualized
Infrastructures. In 16th European Symposium on Research in
Computer Security (ESORICS’11) (Sep 2011), Springer.

[5] Bleikertz, S., Groß, T., and Vogel, C. Cloud Radar: Near
Real-Time Detection of Security Failures in Dynamic
Virtualized Infrastructures. In Annual Computer Security
Applications Conference (ACSAC 2014) (Dec 2014), ACM.

[6] CSA. Top threats to cloud computing v1.0. Tech. rep., Cloud
Security Alliance (CSA), mar 2010.

[7] ENISA. Cloud computing: Benefits, risks and recommendations
for information security. Tech. rep., European Network and
Information Security Agency (ENISA), nov 2009.

[8] Geiß, R., Batz, G. V., Grund, D., Hack, S., and Szalkowski,
A. GrGen: A Fast SPO-Based Graph Rewriting Tool. In Third
International Conference on Graph Transformation (2006),
Springer, pp. 383–397.

[9] Ghamarian, A. H., de Mol, M., Rensink, A., Zambon, E., and
Zimakova, M. Modelling and analysis using GROOVE.
International Journal on Software Tools for Technology
Transfer (March 2011).

[10] Hagen, S., Seibold, M., and Kemper, A. Efficient verification of
IT change operations or: How we could have prevented
Amazon’s cloud outage. In Network Operations and
Management Symposium (April 2012), pp. 368–376.

[11] Jackson, D. Alloy: a lightweight object modelling notation.
ACM Trans. Softw. Eng. Methodol. 11 (April 2002), 256–290.

[12] Jeffrey, A., and Samak, T. Model Checking Firewall Policy
Configurations. In Proceedings of the 10th IEEE
International Conference on Policies for Distributed Systems
and Networks (2009), POLICY’09, IEEE Press, pp. 60–67.

[13] Kazemian, P., Chang, M., Zeng, H., Varghese, G., McKeown,
N., and Whyte, S. Real Time Network Policy Checking Using
Header Space Analysis. In 10th USENIX Symposium on
Networked Systems Design and Implementation (2013),
pp. 99–111.

[14] Khurshid, A., Zou, X., Zhou, W., Caesar, M., and Godfrey,
P. B. VeriFlow: Verifying Network-Wide Invariants in Real
Time. In 10th USENIX Symposium on Networked Systems
Design and Implementation (2013), pp. 15–27.

[15] Kikuchi, S., and Hiraishi, K. Improving reliability in
management of cloud computing infrastructure by formal
methods. In Network Operations and Management
Symposium (NOMS), 2014 IEEE (May 2014), pp. 1–7.

[16] Kim, H., Benson, T., Akella, A., and Feamster, N. The
Evolution of Network Configuration: A Tale of Two Campuses.
In Proceedings of the 2011 ACM SIGCOMM Conference on
Internet Measurement Conference (2011), IMC ’11,
pp. 499–514.

[17] Koch, M., Mancini, L. V., and Parisi-Presicce, F. A
Graph-based Formalism for RBAC. ACM Trans. Inf. Syst.
Secur. 5, 3 (Aug. 2002), 332–365.

[18] Mahajan, R., Wetherall, D., and Anderson, T.
Understanding BGP Misconfiguration. In Proceedings of the
2002 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications
(2002), SIGCOMM ’02, pp. 3–16.

[19] Narain, S. Network Configuration Management via Model
Finding. In Proceedings of the 19th conference on Large
Installation System Administration Conference - Volume 19
(2005), LISA ’05, pp. 15–15.

[20] Oppenheimer, D., Ganapathi, A., and Patterson, D. A. Why
do internet services fail, and what can be done about it? In
Proceedings of the 4th conference on USENIX Symposium on
Internet Technologies and Systems - Volume 4 (2003).

[21] Rensink, A., and Kuperus, J.-H. Repotting the geraniums: on
nested graph transformation rules. In Graph transformation
and visual modelling techniques (2009), vol. 18 of Electronic
Communications of the EASST.

[22] Ristenpart, T., Tromer, E., Shacham, H., and Savage, S. Hey,
You, Get Off of My Cloud: Exploring Information Leakage in
Third-Party Compute Clouds. In Proceedings of the 16th
ACM conference on Computer and communications security
(2009), pp. 199–212.

[23] Rozenberg, G., Ed. Handbook of Graph Grammars and
Computing by Graph Transformation: Volume I.
Foundations, vol. 1. World Scientific Publishing Co., Inc.,
River Edge, NJ, USA, 1997.

[24] Sailer, R., Jaeger, T., Valdez, E., Caceres, R., Perez, R.,
Berger, S., Griffin, J. L., and Doorn, L. v. Building a
mac-based security architecture for the xen open-source
hypervisor. In Proceedings of the 21st Annual Computer
Security Applications Conference (2005), pp. 276–285.

[25] Schiffman, J., Sun, Y., Vijayakumar, H., and Jaeger, T. Cloud
Verifier: Verifiable Auditing Service for IaaS Clouds. In
Proceedings of the IEEE 1st International Workshop on
Cloud Security Auditing (CSA 2013) (June 2013).

[26] Shafer, I., Gylfason, S., and Ganger, G. R. vQuery: a
Platform for Connecting Configuration and Performance.
VMware Technical Journal 1, 2 (Dec. 2012).

[27] VMware. vSphere 5.0 API Reference, Aug 2011.
http://pubs.vmware.com/vsphere-50/topic/com.vmware.wssdk.
apiref.doc_50/right-pane.html.

[28] VMware. vSphere Security, ESXi 5.5, vCenter Server 5.5
(EN-001164-04), 2013.

[29] Wei, J., Zhang, X., Ammons, G., Bala, V., and Ning, P.
Managing Security of Virtual Machine Images in a Cloud
Environment. In Proceedings of the ACM Workshop on Cloud
Computing Security (2009), CCSW ’09, ACM, pp. 91–96.

